18.2.5
Variants on Bellman-Ford
Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

- For each v the $d(v)$ can only get smaller as algorithm proceeds.
- If $d(v)$ becomes smaller it is because we found a vertex u such that $d(v) > d(u) + \ell(u, v)$ and we update $d(v) = d(u) + \ell(u, v)$. That is, we found a shorter path to v through u.
- For each v have a $\text{prev}(v)$ pointer and update it to point to u if v finds a shorter path via u.
- At end of algorithm $\text{prev}(v)$ pointers give a shortest path tree oriented towards the source s.
Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a negative length cycle?

1. Bellman-Ford checks whether there is a negative cycle C that is reachable from a specific vertex s. There may negative cycles not reachable from s.
2. Run Bellman-Ford $|V|$ times, once from each node u.

Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a negative length cycle?

1. Bellman-Ford checks whether there is a negative cycle C that is reachable from a specific vertex s. There may be negative cycles not reachable from s.

2. Run Bellman-Ford $|V|$ times, once from each node u?
Negative Cycle Detection

1. Add a new node s' and connect it to all nodes of G with zero length edges. Bellman-Ford from s' will fill find a negative length cycle if there is one. **Exercise:** why does this work?

2. Negative cycle detection can be done with one Bellman-Ford invocation.
THE END

... (for now)