18.2.3.1 Correctness of the Bellman-Ford Algorithm
Bellman-Ford Algorithm: Modified for analysis

for each $u \in V$ do
 $d(u, 0) \leftarrow \infty$
 $d(s, 0) \leftarrow 0$

for $k = 1$ to n do
 for each $v \in V$ do
 $d(v, k) \leftarrow d(v, k - 1)$
 for each edge $(u, v) \in in(v)$ do
 $d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}$

for each $v \in V$ do
 $\text{dist}(s, v) \leftarrow d(v, n - 1)$
Lemma 18.3.

For each v, $d(v, k)$ is the length of a shortest walk from s to v with at most k hops.

Proof.

Standard induction (left as exercise).
Bellman-Ford computes the shortest paths correctly

Lemma 18.4.

If G does not have a negative length cycle reachable from $s \Rightarrow \forall v$: $d(v, n) = d(v, n - 1)$.

Also, $d(v, n - 1)$ is the length of the shortest path between s and v.

Proof.

Shortest walk from s to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).

A path has at most $n - 1$ edges.

\Rightarrow Len shortest walk from s to v with at most $n - 1$ edges

$= \text{Len shortest walk from } s \text{ to } v$

$= \text{Len shortest path from } s \text{ to } v$.

By **Lemma 18.3**: $d(v, n) = d(v, n - 1) = \text{dist}(s, v)$, for all v.

□
Bellman-Ford computes the shortest paths correctly

Lemma 18.4.

If G does not have a negative length cycle reachable from s $\iff \forall v:$

$$d(v, n) = d(v, n - 1).$$

Also, $d(v, n - 1)$ is the length of the shortest path between s and v.

Proof.

Shortest walk from s to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).

A path has at most $n - 1$ edges.

\Rightarrow Len shortest walk from s to v with at most $n - 1$ edges

$=\$ Len shortest walk from s to v

$=\$ Len shortest path from s to v.

By Lemma 18.3: $d(v, n) = d(v, n - 1) = \text{dist}(s, v)$, for all v.

\square
Bellman-Ford computes the shortest paths correctly

Lemma 18.4.

If G does not have a negative length cycle reachable from $s \implies \forall v$: $d(v, n) = d(v, n - 1)$.

Also, $d(v, n - 1)$ is the length of the shortest path between s and v.

Proof.

Shortest walk from s to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).

A path has at most $n - 1$ edges.

\implies Len shortest walk from s to v with at most $n - 1$ edges

$= \text{Len shortest walk from } s \text{ to } v$

$= \text{Len shortest path from } s \text{ to } v$.

By Lemma 18.3: $d(v, n) = d(v, n - 1) = \text{dist}(s, v)$, for all v.

\square
Bellman-Ford computes the shortest paths correctly

Lemma 18.4.

If \(G \) does not have a negative length cycle reachable from \(s \) \(\Rightarrow \forall v: d(v, n) = d(v, n - 1) \).

Also, \(d(v, n - 1) \) is the length of the shortest path between \(s \) and \(v \).

Proof.

Shortest walk from \(s \) to reachable vertex is a path [not repeated vertex] (otherwise \(\exists \) neg cycle).

A path has at most \(n - 1 \) edges.

\[\Rightarrow \text{ Len shortest walk from } s \text{ to } v \text{ with at most } n - 1 \text{ edges} \]

\[= \text{ Len shortest walk from } s \text{ to } v \]

\[= \text{ Len shortest path from } s \text{ to } v \]

By **Lemma 18.3**: \(d(v, n) = d(v, n - 1) = \text{dist}(s, v) \), for all \(v \).
Bellman-Ford computes the shortest paths correctly

Lemma 18.4.

If G does not have a negative length cycle reachable from s $\iff \forall v$: $d(v, n) = d(v, n - 1)$.

Also, $d(v, n - 1)$ is the length of the shortest path between s and v.

Proof.

Shortest walk from s to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).

A path has at most $n - 1$ edges.

\implies Len shortest walk from s to v with at most $n - 1$ edges

= Len shortest walk from s to v

= Len shortest **path** from s to v.

By **Lemma 18.3**: $d(v, n) = d(v, n - 1) = \text{dist}(s, v)$, for all v. \(\square\)
Bellman-Ford computes the shortest paths correctly

Lemma 18.4.

If G does not has a negative length cycle reachable from $s \implies \forall v:$

$$d(v, n) = d(v, n - 1).$$

Also, $d(v, n - 1)$ is the length of the shortest path between s and v.

Proof.

Shortest walk from s to reachable vertex is a path [not repeated vertex]
(otherwise \exists neg cycle).

A path has at most $n - 1$ edges.

\implies Len shortest walk from s to v with at most $n - 1$ edges

$= \ $ Len shortest walk from s to v

$= \ $ Len shortest path from s to v.

By **Lemma 18.3** : $d(v, n) = d(v, n - 1) = \text{dist}(s, v)$, for all v.

THE END
...
(for now)