18.1.4
Applications of shortest path for negative weights on edges
Why negative lengths?

Several Applications

1. Shortest path problems useful in modeling many situations — in some negative lengths are natural
2. Negative length cycle can be used to find arbitrage opportunities in currency trading
3. Important sub-routine in algorithms for more general problem: minimum-cost flow
Negative cycles
Application to Currency Trading

Currency Trading

Input: \(n \) currencies and for each ordered pair \((a, b)\) the exchange rate for converting one unit of \(a \) into one unit of \(b \).

Questions:

1. Is there an arbitrage opportunity?
2. Given currencies \(s, t \) what is the best way to convert \(s \) to \(t \) (perhaps via other intermediate currencies)?

Concrete example:

1. 1 Chinese Yuan = 0.1116 Euro
2. 1 Euro = 1.3617 US dollar
3. 1 US Dollar = 7.1 Chinese Yuan.

Thus, if exchanging 1 $ → Yuan → Euro → $, we get: \(0.1116 \times 1.3617 \times 7.1 = 1.07896\) $.
Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $\text{exch}(i, k_1) \times \text{exch}(k_1, k_2) \ldots \times \text{exch}(k_h, j)$ units of j.

Create currency trading directed graph $G = (V, E)$:
1. For each currency i there is a node $v_i \in V$
2. $E = V \times V$: an edge for each pair of currencies
3. edge length $\ell(v_i, v_j) = -\log(\text{exch}(i, j))$ can be negative

Exercise: Verify that
1. There is an arbitrage opportunity if and only if G has a negative length cycle.
2. The best way to convert currency i to currency j is via a shortest path in G from i to j. If d is the distance from i to j then one unit of i can be converted into 2^d units of j.
Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $\text{exch}(i, k_1) \times \text{exch}(k_1, k_2) \ldots \times \text{exch}(k_h, j)$ units of j.

Create currency trading directed graph $G = (V, E)$:

1. For each currency i there is a node $v_i \in V$
2. $E = V \times V$: an edge for each pair of currencies
3. edge length $\ell(v_i, v_j) = -\log(\text{exch}(i, j))$ can be negative

Exercise: Verify that

1. There is an arbitrage opportunity if and only if G has a negative length cycle.
2. The best way to convert currency i to currency j is via a shortest path in G from i to j. If d is the distance from i to j then one unit of i can be converted into 2^d units of j.

Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $\text{exch}(i, k_1) \times \text{exch}(k_1, k_2) \cdots \times \text{exch}(k_h, j)$ units of j.

Create currency trading directed graph $G = (V, E)$:
1. For each currency i there is a node $v_i \in V$
2. $E = V \times V$: an edge for each pair of currencies
3. edge length $\ell(v_i, v_j) = -\log(\text{exch}(i, j))$ can be negative

Exercise: Verify that
1. There is an arbitrage opportunity if and only if G has a negative length cycle.
2. The best way to convert currency i to currency j is via a shortest path in G from i to j. If d is the distance from i to j then one unit of i can be converted into 2^d units of j.
Reducing Currency Trading to Shortest Paths

Observation: If we convert currency \(i \) to \(j \) via intermediate currencies \(k_1, k_2, \ldots, k_h \) then one unit of \(i \) yields \(\text{exch}(i, k_1) \times \text{exch}(k_1, k_2) \ldots \times \text{exch}(k_h, j) \) units of \(j \).

Create currency trading directed graph \(G = (V, E) \):

1. For each currency \(i \) there is a node \(v_i \in V \)
2. \(E = V \times V \): an edge for each pair of currencies
3. edge length \(\ell(v_i, v_j) = -\log(\text{exch}(i, j)) \) can be negative

Exercise: Verify that

1. There is an arbitrage opportunity if and only if \(G \) has a negative length cycle.
2. The best way to convert currency \(i \) to currency \(j \) is via a shortest path in \(G \) from \(i \) to \(j \). If \(d \) is the distance from \(i \) to \(j \) then one unit of \(i \) can be converted into \(2^d \) units of \(j \).
Reducing Currency Trading to Shortest Paths

Math recall - relevant information

1. \(\log(\alpha_1 \times \alpha_2 \times \cdots \times \alpha_k) = \log \alpha_1 + \log \alpha_2 + \cdots + \log \alpha_k. \)

2. \(\log x > 0 \) if and only if \(x > 1 \).
THE END

...

(for now)