18.1.2
But wait! Things get worse: Negative cycles
Definition 18.2.

A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.
Definition 18.2.

A cycle \(C \) is a negative length cycle if the sum of the edge lengths of \(C \) is negative.
Negative Length Cycles

Definition 18.2.
A cycle \(C \) is a negative length cycle if the sum of the edge lengths of \(C \) is negative.

What is the shortest path distance between \(s \) and \(t \)?
Reminder: Paths have to be simple...
Shortest Paths and Negative Cycles

Given $G = (V, E)$ with edge lengths and s, t. Suppose

1. G has a negative length cycle C, and
2. s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

1. undefined, that is $-\infty$, OR
2. the length of a shortest simple path from s to t.
Shortest Paths and Negative Cycles

Given $G = (V, E)$ with edge lengths and s, t. Suppose

1. G has a negative length cycle C, and
2. s can reach C and C can reach t.

Question: What is the shortest **distance** from s to t?

Possible answers: Define shortest distance to be:

1. undefined, that is $-\infty$, OR
2. the length of a shortest **simple** path from s to t.
Really bad new about negative edges, and shortest path...

Lemma 18.3.

If there is an efficient algorithm to find a shortest simple \(s \rightarrow t \) path in a graph with negative edge lengths, then there is an efficient algorithm to find the longest simple \(s \rightarrow t \) path in a graph with positive edge lengths.

Finding the \(s \rightarrow t \) longest path is difficult. **NP-Hard!**
THE END

... (for now)