17.3.5
The basic algorithm: Find the ith closest vertex
A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s and that no edge has zero length)

Initialize for each node v, $\text{dist}(s,v) = \infty$
Initialize $X = \{s\}$,
for $i = 2$ to $|V|$ do
 (* Invariant: X contains the $i-1$ closest nodes to s *)
 Among nodes in $V - X$, find the node v that is the ith closest to s
 Update $\text{dist}(s,v)$
 $X = X \cup \{v\}$

How can we implement the step in the for loop?
A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s and that no edge has zero length)

Initialize for each node \(v \), \(\text{dist}(s, v) = \infty \)
Initialize \(X = \{ s \} \),
\[\text{for } i = 2 \text{ to } |V| \text{ do} \]
(* Invariant: \(X \) contains the \(i - 1 \) closest nodes to \(s \) *)
Among nodes in \(V - X \), find the node \(v \) that is the \(i \)th closest to \(s \)
Update \(\text{dist}(s, v) \)
\(X = X \cup \{ v \} \)

How can we implement the step in the for loop?
Finding the ith closest node

1. X contains the $i − 1$ closest nodes to s
2. Want to find the ith closest node from $V − X$.

What do we know about the ith closest node?

Claim

Let P be a shortest path from s to v where v is the ith closest node. Then, all intermediate nodes in P belong to X.

Proof.

If P had an intermediate node u not in X then u will be closer to s than v. Implies v is not the ith closest node to s - recall that X already has the $i − 1$ closest nodes.
Finding the ith closest node

1. X contains the $i - 1$ closest nodes to s
2. Want to find the ith closest node from $V - X$.

What do we know about the ith closest node?

Claim

Let P be a shortest path from s to v where v is the ith closest node. Then, all intermediate nodes in P belong to X.

Proof.

If P had an intermediate node u not in X then u will be closer to s than v. Implies v is not the ith closest node to s - recall that X already has the $i - 1$ closest nodes.
Finding the \(i \)th closest node

1. \(X \) contains the \(i - 1 \) closest nodes to \(s \)
2. Want to find the \(i \)th closest node from \(V - X \).

What do we know about the \(i \)th closest node?

Claim

Let \(P \) be a shortest path from \(s \) to \(v \) where \(v \) is the \(i \)th closest node. Then, all intermediate nodes in \(P \) belong to \(X \).

Proof.

If \(P \) had an intermediate node \(u \) not in \(X \) then \(u \) will be closer to \(s \) than \(v \). Implies \(v \) is not the \(i \)th closest node to \(s \) - recall that \(X \) already has the \(i - 1 \) closest nodes. \(\square \)
Finding the ith closest node repeatedly

An example
Finding the \(i^{th}\) closest node repeatedly

An example
Finding the ith closest node repeatedly

An example
Finding the ith closest node repeatedly

An example
Finding the ith closest node

Corollary

The ith closest node is adjacent to X.
Summary

Proved that the basic algorithm is (intuitively) correct...
...but is missing details
...and how to implement efficiently?
THE END

...

(for now)