17.3.3
Shortest path in the weighted case using BFS
Special case: All edge lengths are 1.

1. Run BFS(s) to get shortest path distances from s to all other nodes.
2. $O(m + n)$ time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e? Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e.
Single-Source Shortest Paths via BFS

1. **Special case:** All edge lengths are **1**.
 1. Run **BFS**\((s)\) to get shortest path distances from \(s\) to all other nodes.
 2. **\(O(m + n)\)** time algorithm.

2. **Special case:** Suppose \(\ell(e)\) is an integer for all \(e\)? Can we use **BFS**? Reduce to unit edge-length problem by placing \(\ell(e) - 1\) dummy nodes on \(e\).
Special case: All edge lengths are 1.
1. Run \textit{BFS}(s) to get shortest path distances from s to all other nodes.
2. \(O(m + n)\) time algorithm.

Special case: Suppose \(\ell(e)\) is an integer for all \(e\)? Can we use \textit{BFS}?
Reduce to unit edge-length problem by placing \(\ell(e) - 1\) dummy nodes on \(e\).
Single-Source Shortest Paths via BFS

1. **Special case:** All edge lengths are 1.
 1. Run $\text{BFS}(s)$ to get shortest path distances from s to all other nodes.
 2. $O(m + n)$ time algorithm.

2. **Special case:** Suppose $\ell(e)$ is an integer for all e?
 Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e.
Example of edge refinement
Example of edge refinement
Example of edge refinement
Shortest path using BFS

Let \(L = \max_e \ell(e) \). New graph has \(O(ml) \) edges and \(O(ml + n) \) nodes. BFS takes \(O(ml + n) \) time. Not efficient if \(L \) is large.
Why does BFS kind of works?

Why does BFS work?

BFS explores nodes in increasing distance from *s*
Why does BFS kind of works?

Why does **BFS** work?

BFS(s) explores nodes in increasing distance from *s*
THE END

...

(for now)