17.2.1
BFS with distances and layers
BFS with distances

BFS(s)
Mark all vertices as unvisited; for each v set $\text{dist}(v) = \infty$
Initialize search tree T to be empty
Mark vertex s as visited and set $\text{dist}(s) = 0$
set Q to be the empty queue
enqueue(s)
while Q is nonempty **do**
 $u = \text{dequeue}(Q)$
 for each vertex $v \in \text{Adj}(u) **do**$
 if v is not visited **do**
 if v is not visited **do**
 add edge (u, v) to T
 Mark v as visited, **enqueue(v)**
 and set $\text{dist}(v) = \text{dist}(u) + 1$
Properties of BFS: Undirected Graphs

Theorem

The following properties hold upon termination of BFS(s):

(A) Search tree contains exactly the set of vertices in the connected component of s.

(B) If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v.

(C) For every vertex u, $\text{dist}(u)$ is the length of a shortest path (in terms of number of edges) from s to u.

(D) If u, v are in connected component of s and $e = \{u, v\}$ is an edge of G, then $|\text{dist}(u) - \text{dist}(v)| \leq 1$.
Properties of **BFS**: Directed Graphs

Theorem

The following properties hold upon termination of **BFS**(*s)*:

- **A.** The search tree contains exactly the set of vertices reachable from *s*
- **B.** If \(\text{dist}(u) < \text{dist}(v) \) then *u* is visited before *v*
- **C.** For every vertex *u*, \(\text{dist}(u) \) is indeed the length of shortest path from *s* to *u*
- **D.** If *u* is reachable from *s* and \(e = (u, v) \) is an edge of *G*, then \(\text{dist}(v) - \text{dist}(u) \leq 1 \).

Not necessarily the case that \(\text{dist}(u) - \text{dist}(v) \leq 1 \).
BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set $L_0 = \{s\}$
$i = 0$
while L_i is not empty do
 initialize L_{i+1} to be an empty list
 for each u in L_i do
 for each edge $(u, v) \in \text{Adj}(u)$ do
 if v is not visited
 mark v as visited
 add (u, v) to tree T
 add v to L_{i+1}
 $i = i + 1$

Running time: $O(n + m)$
BFS with Layers

BFS\text{Layers}(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set $L_0 = \{s\}$

$i = 0$

while L_i is not empty do
 initialize L_{i+1} to be an empty list
 for each u in L_i do
 for each edge $(u, v) \in \text{Adj}(u)$ do
 if v is not visited
 mark v as visited
 add (u, v) to tree T
 add v to L_{i+1}

 $i = i + 1$

Running time: $O(n + m)$
Example
BFS with Layers: Properties

Proposition

The following properties hold on termination of $\text{BFS Layers}(s)$.

1. $\text{BFS Layers}(s)$ outputs a BFS tree
2. L_i is the set of vertices at distance exactly i from s
3. If G is undirected, each edge $e = \{u, v\}$ is one of three types:
 - *tree* edge between two consecutive layers
 - *non-tree* forward/backward edge between two consecutive layers
 - *non-tree* cross-edge with both u, v in same layer
4. \implies Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers.
Definition

A directed graph (also called a digraph) is \(G = (V, E) \), where

- \(V \) is a set of vertices or nodes,
- \(E \subseteq V \times V \) is set of ordered pairs of vertices called edges.
BFS with Layers: Properties

For directed graphs

Proposition

The following properties hold on termination of \(\text{BFSLayers}(s) \), if \(G \) is directed. For each edge \(e = (u, v) \) is one of four types:

1. a **tree** edge between consecutive layers, \(u \in L_i, v \in L_{i+1} \) for some \(i \geq 0 \)
2. a non-tree **forward** edge between consecutive layers
3. a non-tree **backward** edge
4. a **cross-edge** with both \(u, v \) in same layer
THE END

...

(for now)