16.5
The meta graph of strong connected components
Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture:
Saw an $O(n \cdot (n + m))$ time algorithm.
This lecture: sketch of a $O(n + m)$ time algorithm.
Graph of SCCs

\[G: \]

Meta-graph of SCCs

Let \(S_1, S_2, \ldots, S_k \) be the strong connected components (i.e., SCCs) of \(G \). The graph of SCCs is \(G^{SCC} \)

1. Vertices are \(S_1, S_2, \ldots, S_k \)
2. There is an edge \((S_i, S_j)\) if there is some \(u \in S_i \) and \(v \in S_j \) such that \((u, v)\) is an edge in \(G \).
Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC}.

Proof.

Exercise.
The meta graph of SCCs is a DAG...

Proposition

For any graph G, the graph G^{SCC} *has no directed cycle.*

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ should be in the same SCC in G. Formal details: exercise.
To Remember: Structure of Graphs

Undirected graph: connected components of $G = (V, E)$ partition V and can be computed in $O(m + n)$ time.

Directed graph: the meta-graph G^{SCC} of G can be computed in $O(m + n)$ time. G^{SCC} gives information on the partition of V into strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms.
THE END

... (for now)