16.3
Depth First Search (DFS)
16.3.1

Depth First Search (DFS) in Undirected Graphs
Depth First Search

1. DFS special case of Basic Search.
2. DFS is useful in understanding graph structure.
3. DFS used to obtain linear time ($O(m + n)$) algorithms for
 1. Finding cut-edges and cut-vertices of undirected graphs
 2. Finding strong connected components of directed graphs
4. ...many other applications as well.
DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

\[
\text{DFS}(G) \\
\text{for all } u \in V(G) \text{ do} \\
\quad \text{Mark } u \text{ as unvisited} \\
\quad \text{Set pred}(u) \text{ to null} \\
\quad T \text{ is set to } \emptyset \\
\quad \text{while } \exists \text{ unvisited } u \text{ do} \\
\quad \quad \text{DFS}(u) \\
\quad \text{Output } T
\]

\[
\text{DFS}(u) \\
\quad \text{Mark } u \text{ as visited} \\
\quad \text{for each } uv \text{ in } \text{Out}(u) \text{ do} \\
\quad \quad \text{if } v \text{ is not visited then} \\
\quad \quad \quad \text{add edge } uv \text{ to } T \\
\quad \quad \quad \text{set pred}(v) \text{ to } u \\
\quad \quad \text{DFS}(v)
\]

Implemented using a global array \textit{Visited} for all recursive calls.
\textit{T} is the search tree/forest.
Edges classified into two types: \(uv \in E \) is a

1. **tree edge**: belongs to \(T \)

2. **non-tree edge**: does not belong to \(T \)
Properties of DFS tree

Proposition

1. T is a forest
2. connected components of T are same as those of G.
3. If $uv \in E$ is a non-tree edge then, in T, either:
 1. u is an ancestor of v, or
 2. v is an ancestor of u.

Question: Why are there no cross-edges?
Exercise

Prove that DFS of a graph G with n vertices and m edges takes $O(n + m)$ time.
THE END

...

(for now)