15.5
Algorithms via Basic Search
Algorithms via Basic Search - I

1. Given G and nodes u and v, can u reach v?
2. Given G and u, compute $rch(u)$.

Use $Explore(G, u)$ to compute $rch(u)$ in $O(n + m)$ time.
Algorithms via Basic Search - II

Given G and u, compute all v that can reach u, that is all v such that $u \in rch(v)$. Naive: $O(n(n + m))$

Definition (Reverse graph.)

Given $G = (V, E)$, G^{rev} is the graph with edge directions reversed $G^{rev} = (V, E')$ where $E' = \{(y, x) \mid (x, y) \in E\}$

Compute $rch(u)$ in $G^{rev}!$

- Correctness: exercise
- Running time: $O(n + m)$ to obtain G^{rev} from G and $O(n + m)$ time to compute $rch(u)$ via Basic Search. If both $Out(v)$ and $In(v)$ are available at each v then no need to explicitly compute G^{rev}. Can do $Explore(G, u)$ in G^{rev} implicitly.
Given G and u, compute all v that can reach u, that is all v such that $u \in rch(v)$. Naive: $O(n(n + m))$

Definition (Reverse graph.)

Given $G = (V, E)$, G^{rev} is the graph with edge directions reversed $G^{rev} = (V, E')$ where $E' = \{(y, x) \mid (x, y) \in E\}$

Compute $rch(u)$ in G^{rev}!

- **Correctness**: exercise

- **Running time**: $O(n + m)$ to obtain G^{rev} from G and $O(n + m)$ time to compute $rch(u)$ via Basic Search. If both $Out(v)$ and $In(v)$ are available at each v then no need to explicitly compute G^{rev}. Can do $Explore(G, u)$ in G^{rev} implicitly.
Given G and u, compute all v that can reach u, that is all v such that $u \in \text{rch}(v)$.
Naive: $O(n(n + m))$

Definition (Reverse graph.)

Given $G = (V, E)$, G^{rev} is the graph with edge directions reversed $G^{\text{rev}} = (V, E')$ where $E' = \{(y, x) \mid (x, y) \in E\}$

Compute $\text{rch}(u)$ in G^{rev}!

Correctness: exercise

Running time: $O(n + m)$ to obtain G^{rev} from G and $O(n + m)$ time to compute $\text{rch}(u)$ via Basic Search. If both $\text{Out}(v)$ and $\text{In}(v)$ are available at each v then no need to explicitly compute G^{rev}. Can do $\text{Explore}(G, u)$ in G^{rev} implicitly.
Given G and u, compute all v that can reach u, that is all v such that $u \in rch(v)$. Naive: $O(n(n + m))$

Definition (Reverse graph.)

Given $G = (V, E)$, G^{rev} is the graph with edge directions reversed $G^{rev} = (V, E')$ where $E' = \{(y, x) | (x, y) \in E\}$

Compute $rch(u)$ in G^{rev}!

Correctness: exercise

Running time: $O(n + m)$ to obtain G^{rev} from G and $O(n + m)$ time to compute $rch(u)$ via Basic Search. If both $Out(v)$ and $In(v)$ are available at each v then no need to explicitly compute G^{rev}. Can do $Explore(G, u)$ in G^{rev} implicitly.
Algorithms via Basic Search - III

\(\text{SCC}(G, u) = \{v \mid u \text{ is strongly connected to } v\} \)

- Find the strongly connected component containing node \(u \). That is, compute \(\text{SCC}(G, u) \).

\[
\text{SCC}(G, u) = \text{rch}(G, u) \cap \text{rch}(G^{\text{rev}}, u)
\]

Hence, \(\text{SCC}(G, u) \) can be computed with \textit{Explore}(G, u) and \textit{Explore}(G^{\text{rev}}, u).

Total \(O(n + m) \) time.

Why can \(\text{rch}(G, u) \cap \text{rch}(G^{\text{rev}}, u) \) be done in \(O(n) \) time?
Find the strongly connected component containing node u. That is, compute $\text{SCC}(G, u)$.

$\text{SCC}(G, u) = \{v \mid u \text{ is strongly connected to } v\}$

Hence, $\text{SCC}(G, u)$ can be computed with $\text{Explore}(G, u)$ and $\text{Explore}(G^{rev}, u)$. Total $O(n + m)$ time.

Why can $\text{rch}(G, u) \cap \text{rch}(G^{rev}, u)$ be done in $O(n)$ time?
Find the strongly connected component containing node u. That is, compute $\text{SCC}(G, u)$.

$\text{SCC}(G, u) = \{v \mid u \text{ is strongly connected to } v\}$

$\text{SCC}(G, u) = \text{rch}(G, u) \cap \text{rch}(G^{\text{rev}}, u)$

Hence, $\text{SCC}(G, u)$ can be computed with $\text{Explore}(G, u)$ and $\text{Explore}(G^{\text{rev}}, u)$. Total $O(n + m)$ time.

Why can $\text{rch}(G, u) \cap \text{rch}(G^{\text{rev}}, u)$ be done in $O(n)$ time?
SCC\((G, u)\) = \{v | \text{u is strongly connected to } v\}

Find the strongly connected component containing node \(u\). That is, compute SCC\((G, u)\).

SCC\((G, u)\) = \text{rch}(G, u) \cap \text{rch}(G^{\text{rev}}, u)

Hence, SCC\((G, u)\) can be computed with Explore\((G, u)\) and Explore\((G^{\text{rev}}, u)\). Total \(O(n + m)\) time.

Why can \(\text{rch}(G, u) \cap \text{rch}(G^{\text{rev}}, u)\) be done in \(O(n)\) time?
SCC I: Graph G and its reverse graph G^{rev}
SCC II: Graph G a vertex F .. and its reachable set $rch(G, F)$

Graph G

Reachable set of vertices from F
SCC III: Graph G a vertex F

.. and the set of vertices that can reach it in G: $rch(G^{rev}, F)$

Graph G

Set of vertices that can reach F, computed via **DFS** in the reverse graph G^{rev}.
SCC IV: Graph G a vertex F and...

its strong connected component in G: $\text{SCC}(G, F)$

$\text{SCC}(G, F) = \text{rch}(G, F) \cap \text{rch}(G^{\text{rev}}, F)$
Is G strongly connected?

Pick arbitrary vertex u. Check if $\text{SCC}(G, u) = V$.
Is \(G \) strongly connected?

Pick arbitrary vertex \(u \). Check if \(\text{SCC}(G, u) = V \).
Find all strongly connected components of G.

While G is not empty do
Pick arbitrary node u
find $S = \text{SCC}(G, u)$
Remove S from G

Question: Why doesn’t removing one strong connected components affect the other strong connected components?

Running time: $O(n(n + m))$.

Question: Can we do it in $O(n + m)$ time?
Find all strongly connected components of G.

While G is not empty do
Pick arbitrary node u
find $S = SCC(G, u)$
Remove S from G

Question: Why doesn’t removing one strongly connected components affect the other strongly connected components?

Running time: $O(n(n + m))$.

Question: Can we do it in $O(n + m)$ time?
Find all strongly connected components of G.

While G is not empty do
 Pick arbitrary node u
 find $S = \text{SCC}(G, u)$
 Remove S from G

Question: Why doesn’t removing one strong connected components affect the other strong connected components?

Running time: $O(n(n + m))$.

Question: Can we do it in $O(n + m)$ time?
Find all strongly connected components of G.

While G is not empty do
 Pick arbitrary node u
 find $S = SCC(G, u)$
 Remove S from G

Question: Why doesn’t removing one strong connected components affect the other strong connected components?

Running time: $O(n(n + m))$.

Question: Can we do it in $O(n + m)$ time?
Find all strongly connected components of \(G \).

While \(G \) is not empty do
 Pick arbitrary node \(u \)
 find \(S = \text{SCC}(G, u) \)
 Remove \(S \) from \(G \)

Question: Why doesn’t removing one strong connected components affect the other strong connected components?

Running time: \(O(n(n + m)) \).

Question: Can we do it in \(O(n + m) \) time?
THE END

...

(for now)