15.4

Directed Graphs and Decomposition
Directed Graphs

Definition

A directed graph \(G = (V, E) \) consists of

1. set of vertices/nodes \(V \) and
2. a set of edges/arcs \(E \subseteq V \times V \).

An edge is an ordered pair of vertices. \((u, v)\) different from \((v, u)\).
Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

1. Road networks with one-way streets.

2. Web-link graph: vertices are web-pages and there is an edge from page p to page p' if p has a link to p'. Web graphs used by Google with PageRank algorithm to rank pages.

3. Dependency graphs in variety of applications: link from x to y if y depends on x. Make files for compiling programs.

4. Program Analysis: functions/procedures are vertices and there is an edge from x to y if x calls y.
Directed Graph Representation

Graph $G = (V, E)$ with n vertices and m edges:

2. **Adjacency Lists**: for each node u, $Out(u)$ (also referred to as $Adj(u)$) and $In(u)$ store out-going edges and in-coming edges from u.

Default representation is adjacency lists.
A Concrete Representation for Directed Graphs

Concrete representation discussed previously for undirected graphs easily extends to directed graphs.

Array of edges E

Array of adjacency lists

List of edges (indices) that are incident to v_i
Directed Connectivity

Given a graph $G = (V, E)$:

1. A **(directed) path** is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$. The length of the path is $k - 1$ and the path is from v_1 to v_k.

 By convention, a single node u is a path of length 0.

2. A cycle is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$ and $(v_k, v_1) \in E$.

 By convention, a single node u is not a cycle.

3. A vertex u can reach v if there is a path from u to v. Alternatively, v can be reached from u.

4. Let $rch(u)$ be the set of all vertices reachable from u.
Directed Connectivity

Given a graph $G = (V, E)$:

- A **(directed) path** is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$. The length of the path is $k - 1$ and the path is from v_1 to v_k.

 By convention, a single node u is a path of length 0.

- A **cycle** is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$ and $(v_k, v_1) \in E$.

 By convention, a single node u is not a cycle.

- A vertex u can **reach** v if there is a path from u to v. Alternatively v can be reached from u.

- Let $rch(u)$ be the set of all vertices reachable from u.

Directed Connectivity

Given a graph $G = (V, E)$:

1. A **(directed) path** is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$. The length of the path is $k - 1$ and the path is from v_1 to v_k.
 By convention, a single node u is a path of length 0.

2. A **cycle** is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$ and $(v_k, v_1) \in E$.
 By convention, a single node u is not a cycle.

3. A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u.

4. Let $rch(u)$ be the set of all vertices reachable from u.
Directed Connectivity

Given a graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$:

1. A **(directed) path** is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in \mathbf{E}$ for $1 \leq i \leq k - 1$. The length of the path is $k - 1$ and the path is from v_1 to v_k.

 By convention, a single node u is a path of length 0.

2. A **cycle** is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in \mathbf{E}$ for $1 \leq i \leq k - 1$ and $(v_k, v_1) \in \mathbf{E}$.

 By convention, a single node u is not a cycle.

3. A vertex u can **reach** v if there is a path from u to v. Alternatively v can be reached from u.

4. Let $\text{rch}(u)$ be the set of all vertices reachable from u.
Connectivity contd

Asymmetricity: D can reach B but B cannot reach D

Questions:
1. Is there a notion of connected components?
2. How do we understand connectivity in directed graphs?
Asymmetricity: D can reach B but B cannot reach D

Questions:

1. Is there a notion of connected components?
2. How do we understand connectivity in directed graphs?
THE END

...

(for now)