
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

15.3
Computing connected components in
undirected graphs using basic graph search
FLNAME:15.3.0.0

29 / 73

Basic Graph Search in Undirected Graphs

Given G = (V ,E) and vertex u ∈ V . Let n = |V |.
Explore(G,u):

Visited [1 . . n]← FALSE
// ToExplore, S: Lists

Add u to ToExplore and to S
Visited [u]← TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge xy in Adj (x) do

if (Visited [y] = FALSE)
Visited [y]← TRUE
Add y to ToExplore
Add y to S

Output S

30 / 73

Example
1

2 3

4 5

6

7

8

9

10

31 / 73

Properties of Basic Search

Proposition

Explore(G , u) terminates with S = con(u).

Proof Sketch.
Once Visited [i] is set to TRUE it never changes. Hence a node is added only
once to ToExplore. Thus algorithm terminates in at most n iterations of while
loop.

By induction on iterations, can show v ∈ S ⇒ v ∈ con(u)

Since each node v ∈ S was in ToExplore and was explored, no edges in G leave
S . Hence no node in V − S is in con(u).

Thus S = con(u) at termination.

32 / 73

Properties of Basic Search

Proposition

Explore(G , u) terminates with S = con(u).

Proof Sketch.
Once Visited [i] is set to TRUE it never changes. Hence a node is added only
once to ToExplore. Thus algorithm terminates in at most n iterations of while
loop.

By induction on iterations, can show v ∈ S ⇒ v ∈ con(u)

Since each node v ∈ S was in ToExplore and was explored, no edges in G leave
S . Hence no node in V − S is in con(u).

Thus S = con(u) at termination.

32 / 73

Properties of Basic Search

Proposition

Explore(G , u) terminates in O(m + n) time.

Proof: easy exercise

BFS and DFS are special case of BasicSearch.

1 Breadth First Search (BFS): use queue data structure to implementing the list
ToExplore

2 Depth First Search (DFS): use stack data structure to implement the list
ToExplore

33 / 73

Properties of Basic Search

Proposition

Explore(G , u) terminates in O(m + n) time.

Proof: easy exercise

BFS and DFS are special case of BasicSearch.

1 Breadth First Search (BFS): use queue data structure to implementing the list
ToExplore

2 Depth First Search (DFS): use stack data structure to implement the list
ToExplore

33 / 73

Search Tree

One can create a natural search tree T rooted at u during search.

Explore(G,u):
array Visited [1..n]
Initialize: Visited [i]← FALSE for i = 1, . . . , n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u]← TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj (x) do

if (Visited [y] = FALSE)
Visited [y]← TRUE
Add y to ToExplore
Add y to S
Add y to T with x as its parent

Output S

T is a spanning tree of con(u) rooted at u 34 / 73

Finding all connected components

Exercise: Modify Basic Search to find all connected components of a given graph G in
O(m + n) time.

35 / 73

THE END
...

(for now)

36 / 73

