15.3 Computing connected components in undirected graphs using basic graph search
Basic Graph Search in Undirected Graphs

Given $G = (V, E)$ and vertex $u \in V$. Let $n = |V|$.

```
Explore(G, u):
    Visited[1..n] ← FALSE
    // ToExplore, S: Lists
    Add u to ToExplore and to S
    Visited[u] ← TRUE
    while (ToExplore is non-empty) do
        Remove node x from ToExplore
        for each edge xy in Adj(x) do
            if (Visited[y] = FALSE)
                Visited[y] ← TRUE
                Add y to ToExplore
                Add y to S
        Output S
```
Example
Properties of Basic Search

Proposition

\[\text{Explore}(G, u) \text{ terminates with } S = \text{con}(u). \]

Proof Sketch.

- Once \(\text{Visited}[i] \) is set to \(\text{TRUE} \) it never changes. Hence a node is added only once to \(\text{ToExplore} \). Thus algorithm terminates in at most \(n \) iterations of while loop.
- By induction on iterations, can show \(v \in S \implies v \in \text{con}(u) \)
- Since each node \(v \in S \) was in \(\text{ToExplore} \) and was explored, no edges in \(G \) leave \(S \). Hence no node in \(V - S \) is in \(\text{con}(u) \).
- Thus \(S = \text{con}(u) \) at termination.
Properties of Basic Search

Proposition

\[\text{Explore}(G, u) \text{ terminates with } S = \text{con}(u). \]

Proof Sketch.

- Once \textit{Visited}[i] is set to \textit{TRUE} it never changes. Hence a node is added only once to \textit{ToExplore}. Thus algorithm terminates in at most \(n \) iterations of while loop.
- By induction on iterations, can show \(v \in S \Rightarrow v \in \text{con}(u) \)
- Since each node \(v \in S \) was in \textit{ToExplore} and was explored, no edges in \(G \) leave \(S \). Hence no node in \(V - S \) is in \text{con}(u).
- Thus \(S = \text{con}(u) \) at termination.
Properties of Basic Search

Proposition

\[\text{Explore}(G, u) \text{ terminates in } O(m + n) \text{ time.} \]

Proof: easy exercise

BFS and **DFS** are special case of BasicSearch.

- Breadth First Search (**BFS**): use queue data structure to implementing the list \(\text{ToExplore} \)
- Depth First Search (**DFS**): use stack data structure to implement the list \(\text{ToExplore} \)
Properties of Basic Search

Proposition

\[\text{Explore}(G, u) \text{ terminates in } O(m + n) \text{ time.} \]

Proof: easy exercise

BFS and **DFS** are special case of BasicSearch.

- Breadth First Search (**BFS**): use queue data structure to implementing the list `ToExplore`
- Depth First Search (**DFS**): use stack data structure to implement the list `ToExplore`
Search Tree

One can create a natural search tree T rooted at u during search.

```
Explore($G, u$):
array $Visited[1..n]$
Initialize: $Visited[i] \leftarrow$ FALSE for $i = 1, \ldots, n$
List: $ToExplore, S$
Add $u$ to $ToExplore$ and to $S, Visited[u] \leftarrow$ TRUE
Make tree $T$ with root as $u$
while ($ToExplore$ is non-empty) do
    Remove node $x$ from $ToExplore$
    for each edge $(x, y)$ in $Adj(x)$ do
        if ($Visited[y] = \text{FALSE}$)
            $Visited[y] \leftarrow$ TRUE
            Add $y$ to $ToExplore$
            Add $y$ to $S$
            Add $y$ to $T$ with $x$ as its parent
    Output $S$
```

T is a spanning tree of $\text{con}(u)$ rooted at u
Finding all connected components

Exercise: Modify Basic Search to find all connected components of a given graph G in $O(m + n)$ time.
THE END

...

(for now)