15.2 Connectivity
Connectivity

Given a graph \(G = (V, E) \):

1. path: sequence of distinct vertices \(v_1, v_2, \ldots, v_k \) such that \(v_i; v_{i+1} \in E \) for \(1 \leq i \leq k - 1 \). The length of the path is \(k - 1 \) (the number of edges in the path) and the path is from \(v_1 \) to \(v_k \). Note: a single vertex \(u \) is a path of length 0.

2. cycle: sequence of distinct vertices \(v_1, v_2, \ldots, v_k \) such that \(\{v_i, v_{i+1}\} \in E \) for \(1 \leq i \leq k - 1 \) and \(\{v_1, v_k\} \in E \). Single vertex not a cycle according to this definition.
 Caveat: Some times people use the term cycle to also allow vertices to be repeated; we will use the term tour.

3. A vertex \(u \) is connected to \(v \) if there is a path from \(u \) to \(v \).

4. The connected component of \(u \), \(\text{con}(u) \), is the set of all vertices connected to \(u \). Is \(u \in \text{con}(u) \)?
Connectivity

Given a graph $G = (V, E)$:

1. **path**: sequence of distinct vertices v_1, v_2, \ldots, v_k such that $v_i v_{i+1} \in E$ for $1 \leq i \leq k - 1$. The length of the path is $k - 1$ (the number of edges in the path) and the path is from v_1 to v_k. Note: a single vertex u is a path of length 0.

2. **cycle**: sequence of distinct vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \leq i \leq k - 1$ and $\{v_1, v_k\} \in E$. Single vertex not a cycle according to this definition.

Caveat: Some times people use the term cycle to also allow vertices to be repeated; we will use the term tour.

3. A vertex u is connected to v if there is a path from u to v.

4. The connected component of u, $\text{con}(u)$, is the set of all vertices connected to u. Is $u \in \text{con}(u)$?
Connectivity

Given a graph $G = (V, E)$:

1. **path**: sequence of distinct vertices v_1, v_2, \ldots, v_k such that $v_i v_{i+1} \in E$ for $1 \leq i \leq k - 1$. The length of the path is $k - 1$ (the number of edges in the path) and the path is from v_1 to v_k. Note: a single vertex u is a path of length 0.

2. **cycle**: sequence of distinct vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \leq i \leq k - 1$ and $\{v_1, v_k\} \in E$. Single vertex not a cycle according to this definition.

Caveat: Some times people use the term cycle to also allow vertices to be repeated; we will use the term tour.

3. A vertex u is connected to v if there is a path from u to v.

4. The connected component of u, con(u), is the set of all vertices connected to u. Is $u \in \text{con}(u)$?
Connectivity

Given a graph \(G = (V, E) \):

1. **path**: sequence of distinct vertices \(v_1, v_2, \ldots, v_k \) such that \(v_i v_{i+1} \in E \) for \(1 \leq i \leq k - 1 \). The length of the path is \(k - 1 \) (the number of edges in the path) and the path is from \(v_1 \) to \(v_k \). **Note:** a single vertex \(u \) is a path of length 0.

2. **cycle**: sequence of distinct vertices \(v_1, v_2, \ldots, v_k \) such that \(\{v_i, v_{i+1}\} \in E \) for \(1 \leq i \leq k - 1 \) and \(\{v_1, v_k\} \in E \). Single vertex not a cycle according to this definition. **Caveat:** Some times people use the term cycle to also allow vertices to be repeated; we will use the term **tour**.

3. A vertex \(u \) is **connected** to \(v \) if there is a path from \(u \) to \(v \).

4. The **connected component** of \(u \), \(\text{con}(u) \), is the set of all vertices connected to \(u \). Is \(u \in \text{con}(u) \)?
Connectivity contd

Define a relation C on $V \times V$ as uCv if u is connected to v

1. In undirected graphs, connectivity is a reflexive, symmetric, and transitive relation. Connected components are the equivalence classes.

2. Graph is connected if there is only one connected component.
Connectivity Problems

Algorithmic Problems

1. Given graph \(G \) and nodes \(u \) and \(v \), is \(u \) connected to \(v \)?
2. Given \(G \) and node \(u \), find all nodes that are connected to \(u \).
3. Find all connected components of \(G \).

Can be accomplished in \(O(m + n) \) time using BFS or DFS. BFS and DFS are refinements of a basic search procedure which is good to understand on its own.
Connectivity Problems

Algorithmic Problems

1. Given graph G and nodes u and v, is u connected to v?

2. Given G and node u, find all nodes that are connected to u.

3. Find all connected components of G.

Can be accomplished in $O(m + n)$ time using **BFS** or **DFS**.

BFS and **DFS** are refinements of a basic search procedure which is good to understand on its own.
THE END

...

(for now)