14.5.2

Formal description of algorithm
Recursive solution

1. Input: \(w = w_1 w_2 \ldots w_n \)

2. Assume \(r \) non-terminals in \(G: \{R_1, \ldots, R_r\} \).

3. \(R_1 \): Start symbol.

4. \(f(\ell, s, b): \) TRUE \(\iff \) \(w_s w_{s+1} \ldots, w_{s+\ell-1} \in L(R_b) \).
 = Substring \(w \) starting at pos \(\ell \) of length \(s \) is deriveable by \(R_b \).

5. Recursive formula: \(f(1, s, a) \) is 1 \(\iff \) \((R_a \rightarrow w_s) \in G \).

6. For \(\ell > 1 \): \(f(\text{length}, \text{start pos}, \text{variable index}) \)

 \[
 f(\ell, s, a) = \bigvee_{\mu=1}^{\ell-1} \left(f(\mu, s, \beta) \land f(\ell - \mu, s + \mu, \gamma) \right) \quad \text{if} \quad (R_a \rightarrow R_\beta R_\gamma) \in G
 \]

7. Output: \(w \in L(G) \iff f(n, 1, 1) = 1. \)
Recursive solution

1. **Input:** \(w = w_1 w_2 \ldots w_n \)

2. **Assume** \(r \) non-terminals in \(G \): \(R_1, \ldots, R_r \).

3. **\(R_1 \):** Start symbol.

4. **\(f(\ell, s, b) \):** TRUE \iff \(w_s w_{s+1} \ldots, w_{s+\ell-1} \in L(R_b) \).
 = Substring \(w \) starting at pos \(\ell \) of length \(s \) is deriveable by \(R_b \).

5. **Recursive formula:** \(f(1, s, a) \) is 1 \iff \((R_a \rightarrow w_s) \in G \).

6. **For** \(\ell > 1 \): \(f(\text{length}, \text{start pos}, \text{variable index}) \)

\[
f(\ell, s, a) = \bigvee_{\mu=1}^{\ell-1} \left(f(\mu, s, \beta) \land f(\ell - \mu, s + \mu, \gamma) \right)
\]

\((R_a \rightarrow R_\beta R_\gamma) \in G \)

7. **Output:** \(w \in L(G) \iff f(n, 1, 1) = 1. \)
Recursive solution

1. Input: $w = w_1w_2 \ldots w_n$
2. Assume r non-terminals in G: R_1, \ldots, R_r.
3. R_1: Start symbol.
4. $f(\ell, s, b)$: TRUE \iff $w_sw_{s+1} \ldots , w_{s+\ell-1} \in L(R_b)$.
 $=$ Substring w starting at pos ℓ of length s is deriveable by R_b.
5. Recursive formula: $f(1, s, a)$ is 1 $\iff (R_a \rightarrow w_s) \in G$.
6. For $\ell > 1$: $f(\text{length, start pos, variable index})$

$$f(\ell, s, a) = \bigvee_{\mu=1}^{\ell-1} \bigvee_{(R_a \rightarrow R_\beta R_\gamma) \in G} \left(f(\mu, s, \beta) \land f(\ell - \mu, s + \mu, \gamma) \right)$$

7. Output: $w \in L(G) \iff f(n, 1, 1) = 1$.
Analysis

Assume $G = \{R_1, R_2, \ldots, R_r\}$ with start symbol R_1

- $f(\text{length, start pos, variable index})$.
- Number of subproblems: $O(rn^2)$
- Space: $O(rn^2)$
- Time to evaluate a subproblem from previous ones: $O(|P|n)$
 - P is set of rules
- Total time: $O(|P|rn^3)$ which is polynomial in both $|w|$ and $|G|$. For fixed G the run time is cubic in input string length.
- Running time can be improved to $O(n^3|P|)$.
- Not practical for most programming languages. Most languages assume restricted forms of CFGs that enable more efficient parsing algorithms.
Analysis

Assume $G = \{R_1, R_2, \ldots, R_r\}$ with start symbol R_1

- $f(\text{length, start pos, variable index}).$
- Number of subproblems: $O(rn^2)$
- Space: $O(rn^2)$
- Time to evaluate a subproblem from previous ones: $O(|P|n)$
 - P is set of rules
- Total time: $O(|P|rn^3)$ which is polynomial in both $|w|$ and $|G|$. For fixed G the run time is cubic in input string length.
- Running time can be improved to $O(n^3|P|)$.
- Not practical for most programming languages. Most languages assume restricted forms of CFGs that enable more efficient parsing algorithms.
Analysis

Assume $G = \{R_1, R_2, \ldots, R_r\}$ with start symbol R_1

- $f(\text{length, start pos, variable index})$.
- Number of subproblems: $O(rn^2)$
- Space: $O(rn^2)$
- Time to evaluate a subproblem from previous ones: $O(|P|n)$
 - P is set of rules
- Total time: $O(|P|rn^3)$ which is polynomial in both $|w|$ and $|G|$. For fixed G the run time is cubic in input string length.
- Running time can be improved to $O(n^3|P|)$.
- Not practical for most programming languages. Most languages assume restricted forms of CFGs that enable more efficient parsing algorithms.
The CYK Algorithm

Input string: \(X = x_1 \ldots x_n \).
Input grammar \(G: r \) nonterminal symbols \(R_1 \ldots R_r \), \(R_1 \) start symbol.

\(P[n][n][r] \): Array of booleans. Initialize all to FALSE

for \(s = 1 \) to \(n \) do
 for each unit production \(R_v \rightarrow x_s \) do
 \(P[1][s][v] \leftarrow \) TRUE

for \(\ell = 2 \) to \(n \) do // Length of span
 for \(s = 1 \) to \(n - \ell + 1 \) do // Start of span
 for \(\mu = 1 \) to \(\ell - 1 \) do // Partition of span
 for all \((R_a \rightarrow R_\beta R_\gamma) \in G \) do
 if \(P[p][s][\beta] \) and \(P[\ell - \mu][s + \mu][\gamma] \) then
 \(P[\ell][s][a] \leftarrow \) TRUE

if \(P[n][1][1] \) is TRUE then
 return "\(X \) is member of language"
else
 return "\(X \) is not member of language"
THE END

...

(for now)