13.4 Longest Increasing Subsequence Revisited
13.4.1
Longest Increasing Subsequence
Sequences

Definition 13.1.

Sequence: an ordered list a_1, a_2, \ldots, a_n. *Length* of a sequence is number of elements in the list.

Definition 13.2.

a_{i_1}, \ldots, a_{i_k} is a *subsequence* of a_1, \ldots, a_n if $1 \leq i_1 < i_2 < \ldots < i_k \leq n$.

Definition 13.3.

A sequence is *increasing* if $a_1 < a_2 < \ldots < a_n$. It is *non-decreasing* if $a_1 \leq a_2 \leq \ldots \leq a_n$. Similarly *decreasing* and *non-increasing*.
Example 13.4.

1. Sequence: 6, 3, 5, 2, 7, 8, 1, 9
2. Subsequence of above sequence: 5, 2, 1
3. Increasing sequence: 3, 5, 9, 17, 54
4. Decreasing sequence: 34, 21, 7, 5, 1
5. Increasing subsequence of the first sequence: 2, 7, 9.
Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n
Goal Find an increasing subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

Example 13.5.
1. Sequence: 6, 3, 5, 2, 7, 8, 1
2. Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
3. Longest increasing subsequence: 3, 5, 7, 8
Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n

Goal Find an increasing subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

Example 13.5.

1. Sequence: 6, 3, 5, 2, 7, 8, 1
2. Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
3. Longest increasing subsequence: 3, 5, 7, 8
Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for **LIS**?

LIS(*A[1..n]*):

1. **Case 1**: Does not contain *A[n]* in which case
 \[\text{LIS}(A[1..n]) = \text{LIS}(A[1..(n - 1)]) \]

2. **Case 2**: contains *A[n]* in which case \(\text{LIS}(A[1..n]) \) is not so clear.

Observation 13.6.

For second case we want to find a subsequence in \(A[1..(n - 1)] \) that is restricted to numbers less than \(A[n] \). This suggests that a more general problem is \(\text{LIS}_\text{smaller}(A[1..n], x) \) which gives the longest increasing subsequence in \(A \) where each number in the sequence is less than \(x \).
Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for **LIS**?

LIS(*A*[1..*n]*):

1. **Case 1:** Does not contain *A*[n] in which case
 \[\text{LIS}(A[1..n]) = \text{LIS}(A[1..(n-1)]) \]

2. **Case 2:** contains *A*[n] in which case **LIS**(A[1..n]) is not so clear.

Observation 13.6.

For second case we want to find a subsequence in *A*[1..(n − 1)] *that is restricted to numbers less than* *A*[n]. *This suggests that a more general problem is* **LIS**_**smaller**(*A*[1..*n*], *x*) *which gives the longest increasing subsequence in* *A* *where each number in the sequence is less than* *x*.

Recursive Approach

$LIS(A[1..n])$: the length of longest increasing subsequence in A

$LIS_{smaller}(A[1..n], x)$: length of longest increasing subsequence in $A[1..n]$ with all numbers in subsequence less than x

```
LIS_{smaller}(A[1..i], x):
    if i = 0 then return 0
    m = LIS_{smaller}(A[1..i − 1], x)
    if A[i] < x then
        m = max(m, 1 + LIS_{smaller}(A[1..i − 1], A[i]))
    Output m
```

```
LIS(A[1..n]):
    return LIS_{smaller}(A[1..n], ∞)
```
Recursive Approach

\[
\text{LIS_smaller}(A[1..i], x) :
 \text{if } i = 0 \text{ then return } 0
 m = \text{LIS_smaller}(A[1..i - 1], x)
 \text{if } A[i] < x \text{ then }
 m = \max(m, 1 + \text{LIS_smaller}(A[1..i - 1], A[i]))
 \text{Output } m
\]

\[
\text{LIS}(A[1..n]) :
 \text{return LIS_smaller}(A[1..n], \infty)
\]

- How many distinct sub-problems will \text{LIS_smaller}(A[1..n], \infty) generate? \(O(n^2)\)
- What is the running time if we memoize recursion? \(O(n^2)\) since each call takes \(O(1)\) time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization? \(O(n^2)\)
Recursive Approach

\[
\text{LIS\textunderscore smaller}(A[1..i], x): \\
\text{if } i = 0 \text{ then return } 0 \\
\text{ } m = \text{LIS\textunderscore smaller}(A[1..i - 1], x) \\
\text{if } A[i] < x \text{ then} \\
\text{ } m = \text{max}(m, 1 + \text{LIS\textunderscore smaller}(A[1..i - 1], A[i])) \\
\text{Output } m
\]

\[
\text{LIS}(A[1..n]): \\
\text{return LIS\textunderscore smaller}(A[1..n], \infty)
\]

- How many distinct sub-problems will \text{LIS\textunderscore smaller}(A[1..n], \infty) generate? \(O(n^2)\)
- What is the running time if we memoize recursion? \(O(n^2)\) since each call takes \(O(1)\) time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization? \(O(n^2)\)
Recursive Approach

\[
\text{LIS}_\text{smaller}(A[1..i], x):
\]
\[
\text{if } i = 0 \text{ then return } 0
\]
\[
m = \text{LIS}_\text{smaller}(A[1..i - 1], x)
\]
\[
\text{if } A[i] < x \text{ then}
\]
\[
m = \max(m, 1 + \text{LIS}_\text{smaller}(A[1..i - 1], A[i]))
\]
\[
\text{Output } m
\]

\[
\text{LIS}(A[1..n]):
\]
\[
\text{return } \text{LIS}_\text{smaller}(A[1..n], \infty)
\]

- How many distinct sub-problems will \text{LIS}_\text{smaller}(A[1..n], \infty) generate? \(O(n^2)\)
- What is the running time if we memoize recursion? \(O(n^2)\) since each call takes \(O(1)\) time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization? \(O(n^2)\)
Recursive Approach

```python
LIS_smaller(A[1..i], x):
    if i = 0 then return 0
    m = LIS_smaller(A[1..i - 1], x)
    if A[i] < x then
        m = max(m, 1 + LIS_smaller(A[1..i - 1], A[i]))
    Output m
```

```python
LIS(A[1..n]):
    return LIS_smaller(A[1..n], ∞)
```

- How many distinct sub-problems will `LIS_smaller(A[1..n], ∞)` generate? $O(n^2)$
- What is the running time if we memoize recursion? $O(n^2)$ since each call takes $O(1)$ time to assemble the answers from recursive calls and no other computation.
- How much space for memoization? $O(n^2)$
Recursive Approach

\[
\text{LIS_smaller}(A[1..i], x):
\]
\[
\text{if } i = 0 \text{ then return 0}
\]
\[
m = \text{LIS_smaller}(A[1..i - 1], x)
\]
\[
\text{if } A[i] < x \text{ then}
\]
\[
m = \max(m, 1 + \text{LIS_smaller}(A[1..i - 1], A[i]))
\]
\[
\text{Output } m
\]

\[
\text{LIS}(A[1..n]):
\]
\[
\text{return LIS_smaller}(A[1..n], \infty)
\]

- How many distinct sub-problems will \(\text{LIS_smaller}(A[1..n], \infty)\) generate? \(O(n^2)\)
- What is the running time if we memoize recursion? \(O(n^2)\) since each call takes \(O(1)\) time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization? \(O(n^2)\)
Recursive Approach

\[
\text{LIS_smaller}(A[1..i], x): \\
\text{if } i = 0 \text{ then return 0} \\
m = \text{LIS_smaller}(A[1..i - 1], x) \\
\text{if } A[i] < x \text{ then} \\
\quad m = \max(m, 1 + \text{LIS_smaller}(A[1..i - 1], A[i])) \\
\text{Output } m
\]

\[
\text{LIS}(A[1..n]): \\
\text{return LIS_smaller}(A[1..n], \infty)
\]

- How many distinct sub-problems will \text{LIS_smaller}(A[1..n], \infty) generate? \(O(n^2)\)
- What is the running time if we memoize recursion? \(O(n^2)\) since each call takes \(O(1)\) time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization? \(O(n^2)\)
Naming subproblems and recursive equation

After seeing that number of subproblems is $O(n^2)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position $n + 1$)

$LIS(i, j)$: length of longest increasing sequence in $A[1..i]$ among numbers less than $A[j]$ (defined only for $i < j$)

Base case: $LIS(0, j) = 0$ for $1 \leq j \leq n + 1$

Recursive relation:

- $LIS(i, j) = LIS(i - 1, j)$ if $A[i] > A[j]$
- $LIS(i, j) = \max\{LIS(i - 1, j), 1 + LIS(i - 1, i)\}$ if $A[i] \leq A[j]$

Output: $LIS(n, n + 1)$.
Naming subproblems and recursive equation

After seeing that number of subproblems is $O(n^2)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position $n + 1$)

$LIS(i, j)$: length of longest increasing sequence in $A[1..i]$ among numbers less than $A[j]$ (defined only for $i < j$)

Base case: $LIS(0, j) = 0$ for $1 \leq j \leq n + 1$

Recursive relation:

- $LIS(i, j) = LIS(i - 1, j)$ if $A[i] > A[j]$
- $LIS(i, j) = \max\{LIS(i - 1, j), 1 + LIS(i - 1, i)\}$ if $A[i] \leq A[j]$

Output: $LIS(n, n + 1)$.
How to order bottom up computation?

Recursive relation:

$$LIS(i, j) = \begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] > A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] \leq A[j]
\end{cases}$$

Sequence: $A[1..7] = 6, 3, 5, 2, 7, 8, 1$
Iterative algorithm

The dynamic program for longest increasing subsequence

\[
\text{LIS-Iterative}(A[1..n]):
\]

\[
A[n + 1] = \infty
\]

\[
\text{int } LIS[0..n, 1..n+1]
\]

\[
\text{for } j = 1 \ldots n + 1 \text{ do } LIS[0,j] = 0
\]

\[
\text{for } i = 1 \ldots n \text{ do }
\]

\[
\text{for } (j = i + 1 \ldots n) \text{ do }
\]

\[
\text{if } (A[i] > A[j])
\]

\[
LIS[i,j] = LIS[i-1,j]
\]

\[
\text{else}
\]

\[
LIS[i,j] = \max(LIS[i-1,j], 1 + LIS[i-1,i])
\]

\[
\text{Return } LIS[n,n+1]
\]

Running time: \(O(n^2)\)

Space: \(O(n^2)\)
Two comments

Question: Can we compute an optimum solution and not just its value?
Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different recursion and optimizing one can obtain an $O(n \log n)$ time and $O(n)$ space algorithm. $O(n \log n)$ time is not obvious. Depends on improving time by using data structures on top of dynamic programming.
Two comments

Question: Can we compute an optimum solution and not just its value?
Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different recursion and optimizing one can obtain an $O(n \log n)$ time and $O(n)$ space algorithm. $O(n \log n)$ time is not obvious. Depends on improving time by using data structures on top of dynamic programming.
Two comments

Question: Can we compute an optimum solution and not just its value?
Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different recursion and optimizing one can obtain an $O(n \log n)$ time and $O(n)$ space algorithm. $O(n \log n)$ time is not obvious. Depends on improving time by using data structures on top of dynamic programming.
THE END

... (for now)