12.3.2
A recursive algorithm for Max Independent Set in a Graph
A Recursive Algorithm

Let $V = \{v_1, v_2, \ldots, v_n\}$.
For a vertex u let $N(u)$ be its neighbors.

Observation

v_1: vertex in the graph.
One of the following two cases is true

Case 1 v_1 is in some maximum independent set.
Case 2 v_1 is in no maximum independent set.

We can try both cases to “reduce” the size of the problem
A Recursive Algorithm

Let $\mathbf{V} = \{v_1, v_2, \ldots, v_n\}$.
For a vertex u let $\mathcal{N}(u)$ be its neighbors.

Observation

v_1: vertex in the graph.

One of the following two cases is true

- **Case 1** v_1 is in some maximum independent set.
- **Case 2** v_1 is in no maximum independent set.

We can try both cases to “reduce” the size of the problem
Removing a vertex (say 5)

Because it is NOT in the independent set
Removing a vertex (say 5)

Because it is NOT in the independent set
Removing a vertex (say 5) and its neighbors

Because it is in the independent set
Removing a vertex (say 5) and its neighbors

Because it is in the independent set
A Recursive Algorithm: The two possibilities

$G_1 = G - v_1$ obtained by removing v_1 and incident edges from G

$G_2 = G - v_1 - N(v_1)$ obtained by removing $N(v_1) \cup v_1$ from G

\[MIS(G) = \max\{MIS(G_1), MIS(G_2) + w(v_1)\} \]
A Recursive Algorithm

RecursiveMIS(G):

if G is empty then Output 0

\[a = \text{RecursiveMIS}(G - v_1) \]

\[b = w(v_1) + \text{RecursiveMIS}(G - v_1 - N(v_n)) \]

Output \(\max(a, b) \)
Recursive Algorithms

..for Maximum Independent Set

Running time:

\[T(n) = T(n - 1) + T\left(n - 1 - \text{deg}(v_1)\right) + O(1 + \text{deg}(v_1)) \]

where \(\text{deg}(v_1) \) is the degree of \(v_1 \). \(T(0) = T(1) = 1 \) is base case.

Worst case is when \(\text{deg}(v_1) = 0 \) when the recurrence becomes

\[T(n) = 2T(n - 1) + O(1) \]

Solution to this is \(T(n) = O(2^n) \).
Backtrack Search via Recursion

1. Recursive algorithm generates a tree of computation where each node is a smaller problem (subproblem).
2. Simple recursive algorithm computes/explores the whole tree blindly in some order.
3. Backtrack search is a way to explore the tree intelligently to prune the search space.

 - Some subproblems may be so simple that we can stop the recursive algorithm and solve it directly by some other method.
 - Memoization to avoid recomputing same problem.
 - Stop the recursion at a subproblem if it is clear that there is no need to explore further.
 - Leads to a number of heuristics that are widely used in practice although the worst case running time may still be exponential.
THE END

...

(for now)