11.4.2
Quick select
QuickSelect
Divide and Conquer Approach

1. Pick a pivot element a from A
2. Partition A based on a.
 $A_{\text{less}} = \{x \in A \mid x \leq a\}$ and $A_{\text{greater}} = \{x \in A \mid x > a\}$
3. $|A_{\text{less}}| = j$: return a
4. $|A_{\text{less}}| > j$: recursively find jth smallest element in A_{less}
5. $|A_{\text{less}}| < j$: recursively find kth smallest element in A_{greater} where $k = j - |A_{\text{less}}|$.
Example

| 16 | 14 | 34 | 20 | 12 | 5 | 3 | 19 | 11 |
Time Analysis

1. Partitioning step: $O(n)$ time to scan A

2. How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be $A[1]$.

Say A is sorted in increasing order and $j = n$.
Exercise: show that algorithm takes $\Omega(n^2)$ time.
Time Analysis

1. Partitioning step: $O(n)$ time to scan A
2. How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be $A[1]$.

Say A is sorted in increasing order and $j = n$.
Exercise: show that algorithm takes $\Omega(n^2)$ time
1. Partitioning step: $O(n)$ time to scan A

2. How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be $A[1]$.

Say A is sorted in increasing order and $j = n$.

Exercise: show that algorithm takes $\Omega(n^2)$ time
A Better Pivot

Suppose pivot is the ℓth smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A

Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies $T(n) = O(n)$!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?
A Better Pivot

Suppose pivot is the ℓth smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A.

Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies $T(n) = O(n)$!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?
A Better Pivot

Suppose pivot is the ℓth smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A.

Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies $T(n) = O(n)$!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?
A Better Pivot

Suppose pivot is the ℓth smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A.

Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies $T(n) = O(n)$!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?
A Better Pivot

Suppose pivot is the ℓth smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A. Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies $T(n) = O(n)$!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?
A Better Pivot

Suppose pivot is the ℓth smallest element where $n/4 \leq \ell \leq 3n/4$.
That is pivot is approximately in the middle of A

Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies $T(n) = O(n)$!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?
THE END

... (for now)