11.3
Faster multiplication: Karatsuba’s Algorithm
A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: \((a + bi)\) and \((c + di)\)

\[(a + bi)(c + di) = ac - bd + (ad + bc)i\]

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.

Compute \(ac, bd, (a + b)(c + d)\). Then \((ad + bc) = (a + b)(c + d) - ac - bd\)
A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: \((a + bi)\) and \((c + di)\)

\[
(a + bi)(c + di) = ac - bd + (ad + bc)i
\]

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute \(ac, bd, (a + b)(c + d)\). Then \((ad + bc) = (a + b)(c + d) - ac - bd\)
A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: \((a + bi)\) and \((c + di)\)

\[(a + bi)(c + di) = ac - bd + (ad + bc)i\]

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute \(ac, bd, (a + b)(c + d)\). Then \((ad + bc) = (a + b)(c + d) - ac - bd\)
Gauss technique for polynomials

\[p(x) = ax + b \quad \text{and} \quad q(x) = cx + d. \]

\[p(x)q(x) = acx^2 + (ad + bc)x + bd. \]

\[p(x)q(x) = acx^2 + ((a + b)(c + d) - ac - bd)x + bd. \]
Gauss technique for polynomials

\[p(x) = ax + b \quad \text{and} \quad q(x) = cx + d. \]

\[p(x)q(x) = acx^2 + (ad + bc)x + bd. \]

\[p(x)q(x) = acx^2 + ((a + b)(c + d) - ac - bd)x + bd. \]
Improving the Running Time

\[bc = b(x)c(x) = (b_Lx + b_R)(c_Lx + c_R) \]
Improving the Running Time

\[bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R) \]

\[= b_L c_L x^2 + (b_L c_R + b_R c_L) x + b_R c_R \]
Improving the Running Time

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R)$$

$$= b_L c_L x^2 + (b_L c_R + b_R c_L)x + b_R c_R$$

$$= (b_L \ast c_L)x^2 + \left((b_L + b_R) \ast (c_L + c_R) - b_L \ast c_L - b_R \ast c_R \right)x + b_R \ast c_R$$
Improving the Running Time

\[bc = b(x)c(x) = (b_Lx + b_R)(c_Lx + c_R) \]
\[= b_Lc_Lx^2 + (b_Lc_R + b_Rc_L)x + b_Rc_R \]
\[= (b_L \cdot c_L)x^2 + \left((b_L + b_R) \cdot (c_L + c_R) - b_L \cdot c_L - b_R \cdot c_R \right)x + b_R \cdot c_R \]

Recursively compute only \(b_Lc_L, b_Rc_R, (b_L + b_R)(c_L + c_R) \).
Improving the Running Time

\[bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R) \]
\[= b_L c_L x^2 + (b_L c_R + b_R c_L)x + b_R c_R \]
\[= (b_L \times c_L)x^2 + \left((b_L + b_R) \times (c_L + c_R) - b_L \times c_L - b_R \times c_R\right)x + b_R \times c_R \]

Recursively compute only \(b_L c_L, b_R c_R, (b_L + b_R)(c_L + c_R) \).

Time Analysis

Running time is given by

\[T(n) = 3T(n/2) + O(n) \]
\[T(1) = O(1) \]

which means \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \).
State of the Art

Schönhage-Strassen 1971: $O(n \log n \log \log n)$ time using Fast-Fourier-Transform (FFT)

Martin Fürer 2007: $O(n \log n 2^{O(\log^* n)})$ time

Conjecture

There is an $O(n \log n)$ time algorithm.
THE END

... (for now)