10.9
Solving Recurrences
Solving Recurrences

Two general methods:

1. Recursion tree method: need to do sums
 - elementary methods, geometric series
 - integration
2. Guess and Verify
 - guessing involves intuition, experience and trial & error
 - verification is via induction
Consider $T(n) = 2T(n/2) + n/\log n$ for $n > 2$, $T(2) = 1$. Construct recursion tree, and observe pattern. ith level has 2^i nodes, and problem size at each node is $n/2^i$ and hence work at each node is $n/2^i / \log n/2^i$.

Summing over all levels

$$T(n) = \sum_{i=0}^{\log(n-1)} 2^i \left[\frac{(n/2^i)}{\log(n/2^i)} \right]$$

$$= \sum_{i=0}^{\log(n-1)} \frac{n}{\log n - i}$$

$$= n \sum_{j=1}^{\log n} \frac{1}{j} = nH_{\log n} = \Theta(n \log \log n)$$
1. Consider $T(n) = 2T(n/2) + \frac{n}{\log n}$ for $n > 2$, $T(2) = 1$.
2. Construct recursion tree, and observe pattern. ith level has 2^i nodes, and problem size at each node is $n/2^i$ and hence work at each node is $\frac{n}{2^i}/\log \frac{n}{2^i}$.
3. Summing over all levels

\[
T(n) = \sum_{i=0}^{\log n - 1} 2^i \left[\frac{(n/2^i)}{\log(n/2^i)} \right]
\]

\[
= \sum_{i=0}^{\log n - 1} \frac{n}{\log n - i}
\]

\[
= n \sum_{j=1}^{\log n} \frac{1}{j} = nH_{\log n} = \Theta(n \log \log n)
\]
Consider $T(n) = T(\sqrt{n}) + 1$ for $n > 2$, $T(2) = 1$.

What is the depth of recursion? $\sqrt{n}, \sqrt{\sqrt{n}}, \sqrt{\sqrt{\sqrt{n}}}, \ldots, O(1)$.

Number of levels: $n^{2^{-L}} = 2$ means $L = \log \log n$.

Number of children at each level is 1, work at each node is 1.

Thus, $T(n) = \sum_{i=0}^{L} 1 = \Theta(L) = \Theta(\log \log n)$.
Consider $T(n) = T(\sqrt{n}) + 1$ for $n > 2$, $T(2) = 1$.

What is the depth of recursion? \sqrt{n}, $\sqrt[4]{n}$, $\sqrt[8]{n}$, \ldots, $O(1)$.

Number of levels: $n^{2^{-L}} = 2$ means $L = \log \log n$.

Number of children at each level is 1, work at each node is 1.

Thus, $T(n) = \sum_{i=0}^{L} 1 = \Theta(L) = \Theta(\log \log n)$.
Consider \(T(n) = \sqrt{n}T(\sqrt{n}) + n \) for \(n > 2 \), \(T(2) = 1 \).

Using recursion trees: number of levels \(L = \log \log n \)

Work at each level? Root is \(n \), next level is \(\sqrt{n} \times \sqrt{n} = n \). Can check that each level is \(n \).

Thus, \(T(n) = \Theta(n \log \log n) \)
Consider $T(n) = \sqrt{n}T(\sqrt{n}) + n$ for $n > 2$, $T(2) = 1$.

Using recursion trees: number of levels $L = \log \log n$

Work at each level? Root is n, next level is $\sqrt{n} \times \sqrt{n} = n$. Can check that each level is n.

Thus, $T(n) = \Theta(n \log \log n)$
Consider $T(n) = T(n/4) + T(3n/4) + n$ for $n > 4$. $T(n) = 1$ for $1 \leq n \leq 4$.

Using recursion tree, we observe the tree has leaves at different levels (a lop-sided tree).

Total work in any level is at most n. Total work in any level without leaves is exactly n.

Highest leaf is at level $\log_4 n$ and lowest leaf is at level $\log_{4/3} n$.

Thus, $n \log_4 n \leq T(n) \leq n \log_{4/3} n$, which means $T(n) = \Theta(n \log n)$.
Consider $T(n) = T(n/4) + T(3n/4) + n$ for $n > 4$. $T(n) = 1$ for $1 \leq n \leq 4$.

Using recursion tree, we observe the tree has leaves at different levels (a lop-sided tree).

Total work in any level is at most n. Total work in any level without leaves is exactly n.

Highest leaf is at level $\log_4 n$ and lowest leaf is at level $\log_{4/3} n$.

Thus, $n \log_4 n \leq T(n) \leq n \log_{4/3} n$, which means $T(n) = \Theta(n \log n)$.
THE END

...

(for now)