10.8
Binary Search
Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x

Goal Is x in A?

```
BinarySearch(A[a..b], x):
    if (b - a < 0) return NO
    mid = A[\lfloor (a + b)/2 \rfloor]
    if (x = mid) return YES
    if (x < mid)
        return BinarySearch(A[a..\lfloor (a + b)/2 \rfloor - 1], x)
    else
        return BinarySearch(A[\lfloor (a + b)/2 \rfloor + 1..b], x)
```

Analysis: $T(n) = T(\lfloor n/2 \rfloor) + O(1)$. $T(n) = O(\log n)$.

Observation: After k steps, size of array left is $n/2^k$
Binary Search in Sorted Arrays

Input: Sorted array A of n numbers and number x

Goal: Is x in A?

```
BinarySearch(A[a..b], x):
    if (b - a < 0) return NO
    mid = A[⌊(a + b)/2⌋]
    if (x = mid) return YES
    if (x < mid)
        return BinarySearch(A[a..⌊(a + b)/2⌋ - 1], x)
    else
        return BinarySearch(A[⌊(a + b)/2⌋ + 1..b], x)
```

Analysis: $T(n) = T(⌊n/2⌋) + O(1)$. $T(n) = O(\log n)$.

Observation: After k steps, size of array left is $n/2^k$
Input Sorted array A of n numbers and number x

Goal Is x in A?

\[
\text{BinarySearch}(A[a..b], x):
\]
\[
\text{if } (b - a < 0) \text{ return NO}
\]
\[
\text{mid } = A[\lfloor(a + b)/2\rfloor]
\]
\[
\text{if } (x = \text{mid}) \text{ return YES}
\]
\[
\text{if } (x < \text{mid})
\]
\[
\text{return BinarySearch}(A[a..\lfloor(a + b)/2\rfloor - 1], x)
\]
\[
\text{else}
\]
\[
\text{return BinarySearch}(A[\lceil(a + b)/2\rceil + 1..b], x)
\]

Analysis: $T(n) = T(\lfloor n/2 \rfloor) + O(1)$. $T(n) = O(\log n)$.

Observation: After k steps, size of array left is $n/2^k$
Another common use of binary search

1. **Optimization version:** find solution of best (say minimum) value
2. **Decision version:** is there a solution of value at most a given value v?

Reduce optimization to decision (may be easier to think about):

1. Given instance I compute upper bound $U(I)$ on best value
2. Compute lower bound $L(I)$ on best value
3. Do binary search on interval $[L(I), U(I)]$ using decision version as black box
4. $O(\log(U(I) - L(I)))$ calls to decision version if $U(I), L(I)$ are integers
Another common use of binary search

1. **Optimization version**: find solution of best (say minimum) value
2. **Decision version**: is there a solution of value at most a given value v?

Reduce optimization to decision (may be easier to think about):

1. Given instance I compute upper bound $U(I)$ on best value
2. Compute lower bound $L(I)$ on best value
3. Do binary search on interval $[L(I), U(I)]$ using decision version as black box
4. $O(\log(U(I) - L(I)))$ calls to decision version if $U(I), L(I)$ are integers
Example

1. **Problem:** shortest paths in a graph.

2. **Decision version:** given G with non-negative integer edge lengths, nodes s, t and bound B, is there an s-t path in G of length at most B?

3. **Optimization version:** find the length of a shortest path between s and t in G.

Question: given a black box algorithm for the decision version, can we obtain an algorithm for the optimization version?
Example continued

Question: given a black box algorithm for the decision version, can we obtain an algorithm for the optimization version?

1. Let U be maximum edge length in G.
2. Minimum edge length is L.
3. s-t shortest path length is at most $(n - 1)U$ and at least L.
5. $O(\log((n - 1)U - L))$ calls to the decision problem algorithm sufficient. Polynomial in input size.
THE END

...

(for now)