10.3.1
More examples of reductions
Maximum Independent Set in a Graph

Definition

Given undirected graph $G = (V, E)$ a subset of nodes $S \subseteq V$ is an independent set (also called a stable set) if for there are no edges between nodes in S. That is, if $u, v \in S$ then $(u, v) \not\in E$.

Some independent sets in graph above:
Maximum Independent Set Problem

Input Graph $G = (V, E)$

Goal Find maximum sized independent set in G
Maximum Weight Independent Set Problem

Input Graph $G = (V, E)$, weights $w(v) \geq 0$ for $v \in V$

Goal Find maximum weight independent set in G
Weighted Interval Scheduling

Input A set of jobs with start times, finish times and **weights** (or profits).

Goal Schedule jobs so that total weight of jobs is maximized.

1 Two jobs with overlapping intervals cannot both be scheduled!

```
0  2  1  1  4  10  2  1  10  3
```

Har-Peled (UIUC)
CS374 32
Fall 2020 32 / 102
Weighted Interval Scheduling

Input A set of jobs with start times, finish times and **weights** (or profits).

Goal Schedule jobs so that total weight of jobs is maximized.

1. Two jobs with overlapping intervals cannot both be scheduled!

![Diagram of weighted interval scheduling with jobs and weights]
Reduction from Interval Scheduling to MIS

Question: Can you reduce Weighted Interval Scheduling to Max Weight Independent Set Problem?
Weighted Circular Arc Scheduling

Input A set of arcs on a circle, each arc has a weight (or profit).

Goal Find a maximum weight subset of arcs that do not overlap.
Reductions

Question: Can you reduce Weighted Interval Scheduling to Weighted Circular Arc Scheduling?

Question: Can you reduce Weighted Circular Arc Scheduling to Weighted Interval Scheduling? Yes!

```
MaxWeightIndependentArcs(arcs C)
    cur-max = 0
    for each arc C ∈ C do
        Remove C and all arcs overlapping with C
        w_C = wt of opt. solution in resulting Interval problem
        w_C = w_C + wt(C)
        cur-max = max{cur-max, w_C}
    end for
    return cur-max
```

n calls to the sub-routine for interval scheduling
Reductions

Question: Can you reduce Weighted Interval Scheduling to Weighted Circular Arc Scheduling?

Question: Can you reduce Weighted Circular Arc Scheduling to Weighted Interval Scheduling? Yes!

```
MaxWeightIndependentArcs(arcs C)
    cur-max = 0
    for each arc C ∈ C do
        Remove C and all arcs overlapping with C
        w_C = wt of opt. solution in resulting Interval problem
        w_C = w_C + wt(C)
        cur-max = max{cur-max, w_C}
    end for
    return cur-max
```

n calls to the sub-routine for interval scheduling
Reductions

Question: Can you reduce Weighted Interval Scheduling to Weighted Circular Arc Scheduling?

Question: Can you reduce Weighted Circular Arc Scheduling to Weighted Interval Scheduling? Yes!

```plaintext
MaxWeightIndependentArcs(arcs \( C \))
    cur-max = 0
    for each arc \( C \in C \) do
        Remove \( C \) and all arcs overlapping with \( C \)
        \( w_C = wt \) of opt. solution in resulting Interval problem
        \( w_C = w_C + wt(C) \)
        cur-max = max\{cur-max, \( w_C \}\)
    end for
    return cur-max
```

\(n \) calls to the sub-routine for interval scheduling
Question: Can you reduce Weighted Interval Scheduling to Weighted Circular Arc Scheduling?

Question: Can you reduce Weighted Circular Arc Scheduling to Weighted Interval Scheduling? Yes!

MaxWeightIndependentArcs(arcs C)

\[
\text{cur-max} = 0
\]

\[
\text{for each arc } C \in C \text{ do}
\]

Remove C and all arcs overlapping with C

$w_C = \text{wt of opt. solution in resulting Interval problem}$

$w_C = w_C + \text{wt}(C)$

$\text{cur-max} = \max\{\text{cur-max}, w_C\}$

\[
\text{end for}
\]

\[
\text{return } \text{cur-max}
\]

n calls to the sub-routine for interval scheduling
THE END

...

(for now)