10.3
Reductions
Reduction

Reducing problem A to problem B:

1. Algorithm for A uses algorithm for B as a black box
Reduction

Reducing problem A to problem B:

1. Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?

A: With a blue elephant gun.
Reduction

Reducing problem \(A \) to problem \(B \):

1. Algorithm for \(A \) uses algorithm for \(B \) as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Q: How do you hunt a red elephant?
A: Hold his trunk shut until it turns blue, and then shoot it with the blue elephant gun.
Reduction

Reducing problem A to problem B:

1. Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Q: How do you hunt a red elephant?
A: Hold his trunk shut until it turns blue, and then shoot it with the blue elephant gun.

Q: How do you shoot a white elephant?
A: Embarrass it till it becomes red. Now use your algorithm for hunting red elephants.
UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

```
DistinctElements(A[1..n])
    for i = 1 to n - 1 do
        for j = i + 1 to n do
            if (A[i] = A[j])
                return YES
        return NO
```

Running time: $O(n^2)$
UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

```
DistinctElements(A[1..n])
    for $i = 1$ to $n - 1$ do
        for $j = i + 1$ to $n$ do
                return YES
        return NO
```

Running time: $O(n^2)$
Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

```
DistinctElements(A[1..n])
    for $i = 1$ to $n - 1$ do
        for $j = i + 1$ to $n$ do
                return YES
        return NO
```

Running time: $O(n^2)$
UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

```
DistinctElements(A[1..n])
   for $i = 1$ to $n - 1$ do
      for $j = i + 1$ to $n$ do
            return YES
      return NO
```

Running time: $O(n^2)$
Reduction to Sorting

DistinctElements($A[1..n]$)

Sort A

for $i = 1$ to $n - 1$ do

if ($A[i] = A[i + 1]$) then

return YES

return NO

Running time: $O(n)$ plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be “sorted”. Can also consider hashing but outside scope of current course.
Reduction to Sorting

DistinctElements(A[1..n])
Sort A
for i = 1 to n − 1 do
 if (A[i] = A[i + 1]) then
 return YES
 return NO

Running time: $O(n)$ plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be “sorted”. Can also consider hashing but outside scope of current course.
Reduction to Sorting

DistinctElements($A[1..n]$)

Sort A

for $i = 1$ to $n - 1$ do

if ($A[i] = A[i + 1]$) then

return YES

return NO

Running time: $O(n)$ plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be “sorted”. Can also consider hashing but outside scope of current course.
Two sides of Reductions

Suppose problem A reduces to problem B

1. **Positive direction:** Algorithm for B implies an algorithm for A
2. **Negative direction:** Suppose there is no “efficient” algorithm for A then it implies no efficient algorithm for B (technical condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in $O(n)$ time

1. An $O(n \log n)$ time algorithm for Sorting implies an $O(n \log n)$ time algorithm for Distinct Elements problem.
2. If there is no $o(n \log n)$ time algorithm for Distinct Elements problem then there is no $o(n \log n)$ time algorithm for Sorting.
Two sides of Reductions

Suppose problem A reduces to problem B

1. **Positive direction:** Algorithm for B implies an algorithm for A
2. **Negative direction:** Suppose there is no “efficient” algorithm for A then it implies no efficient algorithm for B (technical condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in $O(n)$ time

1. An $O(n \log n)$ time algorithm for Sorting implies an $O(n \log n)$ time algorithm for Distinct Elements problem.
2. If there is no $o(n \log n)$ time algorithm for Distinct Elements problem then there is no $o(n \log n)$ time algorithm for Sorting.
THE END

...

(for now)