9.4

Unrecognizable
Definition

Language L is **TM decidable** if there exists M that always stops, such that $L(M) = L$.

Definition

Language L is **TM recognizable** if there exists M that stops on some inputs, such that $L(M) = L$.

Theorem (Halting)

$A_{TM} = \{ \langle M, w \rangle \mid M$ is a TM and M accepts $w \}$. is TM recognizable, but not decidable.
Definition

Language \(L \) is **TM decidable** if there exists \(M \) that always stops, such that \(L(M) = L \).

Definition

Language \(L \) is **TM recognizable** if there exists \(M \) that stops on some inputs, such that \(L(M) = L \).

Theorem (Halting)

\[A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \text{ is TM recognizable, but not decidable.} \]
TM recognizable

Definition

Language L is **TM decidable** if there exists M that always stops, such that $L(M) = L$.

Definition

Language L is **TM recognizable** if there exists M that stops on some inputs, such that $L(M) = L$.

Theorem (Halting)

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$$ is TM recognizable, but not decidable.
Lemma

If L and $\overline{L} = \Sigma^* \setminus L$ are both TM recognizable, then L and \overline{L} are decidable.

Proof.

M: TM recognizing L.

M_c: TM recognizing \overline{L}.

Given input x, using UTM simulating running M and M_c on x in parallel. One of them must stop and accept. Return result.

$\implies L$ is decidable.
Lemma

If \(L \) and \(\overline{L} \) are both TM recognizable, then \(L \) and \(\overline{L} \) are decidable.

Proof.

\(M \): TM recognizing \(L \).

\(M_c \): TM recognizing \(\overline{L} \).

Given input \(x \), using UTM simulating running \(M \) and \(M_c \) on \(x \) in parallel. One of them must stop and accept. Return result.

\[\Rightarrow L \text{ is decidable.} \]
Complement language for A_{TM}

$$A_{TM} = \sum^* \setminus \set{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w}.$$

But don’t really care about invalid inputs. So, really:

$$A_{TM} = \set{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ does not accept } w}.$$
Complement language for A_{TM}

$$A_{TM} = \Sigma^* \setminus \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$$

But don’t really care about invalid inputs. So, really:

$$\overline{A_{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ does not accept } w \}.$$
Theorem

The language

\[\overline{A_{TM}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ does not accept } w \right\} \]

is not TM recognizable.

Proof.

If \(A_{TM} \) is TM-recognizable

\[\implies \] (by Lemma)

\(A_{TM} \) is decidable. A contradiction.
Theorem

The language

$$\overline{A_{TM}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ does not accept } w \right\}.$$

is not TM recognizable.

Proof.

A_{TM} is TM-recognizable.

If A_{TM} is TM-recognizable

$$\implies \quad \text{(by Lemma)}$$

A_{TM} is decidable. A contradiction.
Complement language for A_{TM} is not TM-recognizable

Theorem

The language

$$A_{TM} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ does not accept } w \right\}.$$

is not TM recognizable.

Proof.

If A_{TM} is TM-recognizable

\implies (by Lemma)

A_{TM} is decidable. A contradiction.
THE END

...(for now)