8.6
Why Turing Machine is a “real” computer?
Why Turing Machine is a “real” computer?

TM can compute anything that a real computer can, if very very very tediously.

1. Add/multiply two numbers in binary representation.
2. Move input tape one position to the right.
3. Simulate a TM with two tapes.
4. Simulate a TM with many tapes.
5. Stack.
7. Compile say any C program into a **TM**.
8. Conclusion: **TM** can do what a regular program can do.
9. Turing brilliant observation: A **TM** can simulate/modify another **TM**.
10. Modern equivalent: An interpreter can run a program that might be the interpreter itself (you don’t say).
Why Turing Machine is a “real” computer?

TM can compute anything that a real computer can, if very very very tediously.

1. Add/multiply two numbers in binary representation.
2. Move input tape one position to the right.
3. Simulate a TM with two tapes.
4. Simulate a TM with many tapes.
5. Stack.
7. Compile say any C program into a **TM**.

Conclusion: **TM** can do what a regular program can do.

Turing brilliant observation: A **TM** can simulate/modify another **TM**.

Modern equivalent: An interpreter can run a program that might be the interpreter itself (you don’t say).
Why Turing Machine is a “real” computer?

A Turing Machine (TM) can compute anything that a real computer can, if very very very tediously.

1. Add/multiply two numbers in binary representation.
2. Move input tape one position to the right.
3. Simulate a TM with two tapes.
4. Simulate a TM with many tapes.
5. Stack.
7. Compile say any C program into a TM.
8. Conclusion: TM can do what a regular program can do.
9. Turing brilliant observation: A TM can simulate/modify another TM.
10. Modern equivalent: An interpreter can run a program that might be the interpreter itself (you don’t say).
Why Turing Machine is a “real” computer?

TM can compute anything that a real computer can, if very very very tediously.

1. Add/multiply two numbers in binary representation.
2. Move input tape one position to the right.
3. Simulate a TM with two tapes.
4. Simulate a TM with many tapes.
5. Stack.
7. Compile say any C program into a **TM**.
8. Conclusion: **TM** can do what a regular program can do.
9. Turing brilliant observation: A **TM** can simulate/modify another **TM**.
10. Modern equivalent: An interpreter can run a program that might be the interpreter itself (you don’t say).
Why Turing Machine is a “real” computer?

A Turing Machine (TM) can compute anything that a real computer can, if very very very tediously.

1. Add/multiply two numbers in binary representation.
2. Move input tape one position to the right.
3. Simulate a TM with two tapes.
4. Simulate a TM with many tapes.
5. Stack.
7. Compile say any C program into a TM.
8. Conclusion: TM can do what a regular program can do.
9. Turing brilliant observation: A TM can simulate/modify another TM.
10. Modern equivalent: An interpreter can run a program that might be the interpreter itself (you don’t say).
So what Turing Machines are good for?

1. Simplest mathematical way to describe a computer/program.
2. A good sandbox to argue about what programs can and can not do.
3. A terrible counter-intuitive model, completely unlike real world programs.
4. \(TM = PROGRAM. \)
So what Turing Machines are good for?

1. Simplest mathematical way to describe a computer/program.
2. A good sandbox to argue about what programs can and can not do.
3. A terrible counter-intuitive model, completely unlike real world programs.

$\text{Turing Machine} = \text{PROGRAM}$.
So what Turing Machines are good for?

1. Simplest mathematical way to describe a computer/program.
2. A good sandbox to argue about what programs can and can not do.
3. A terrible counter-intuitive model, completely unlike real world programs.
4. $\text{TM} = \text{PROGRAM}$.
Universal Turing Machine
Turing Machine that simulates another Turing Machine

UTM: A Turing machine that can simulate another Turing machine.

- Programs can self replicate.
- Program can modify themselves (a big no no nowadays).
- Program can rewrite a program.
- Turing had created a Pandora box...
 ...which we will open in the next lecture.
THE END

... (for now)