7.8
Supplemental: Why $a^n b^n c^n$ is not CFL
You are bound to repeat yourself...

$L = \{a^n b^n c^n \mid n \geq 0\}$.

1. For the sake of contradiction assume that there exists a grammar:
 \[G \text{ a CFG for } L. \]

2. \(T_i\): minimal parse tree in \(G\) for \(a^i b^i c^i\).

3. \(h_i = \text{height}(T_i)\): Length of longest path from root to leaf in \(T_i\).

4. For any integer \(t\), there must exist an index \(j(t)\), such that \(h_{j(t)} > t\).

5. There an index \(j\), such that \(h_j > \left(2 \ast \# \text{ variables in } G\right)\).
You are bound to repeat yourself...

$L = \{a^n b^n c^n \mid n \geq 0\}$.

1. For the sake of contradiction assume that there exists a grammar: G a CFG for L.

2. T_i: minimal parse tree in G for $a^i b^i c^i$.

3. $h_i = \text{height}(T_i)$: Length of longest path from root to leaf in T_i.

4. For any integer t, there must exist an index $j(t)$, such that $h_{j(t)} > t$.

5. There an index j, such that $h_j > \left(2 \ast \# \text{ variables in } G\right)$.
Repetition in the parse tree...
Repetition in the parse tree…

$$xyzvw = a^i b^i c^i$$
Repetition in the parse tree...

\[xyzvw = a^i b^j c^j \implies xy^2 z v^2 w \in L \]
We know:

\[xyzvw = a^j b^j c^j \]

\[|y| + |v| > 0. \]

We proved that \(\tau = xy^2zv^2w \in L \).

If \(y \) contains both \(a \) and \(b \), then, \(\tau = \ldots a \ldots b \ldots a \ldots b \ldots \).

Impossible, since \(\tau \in L = \{a^n b^n c^n \mid n \geq 0\} \).

Similarly, not possible that \(y \) contains both \(b \) and \(c \).

Similarly, not possible that \(v \) contains both \(a \) and \(b \).

Similarly, not possible that \(v \) contains both \(b \) and \(c \).

If \(y \) contains only \(a \)s, and \(v \) contains only \(b \)s, then… \(\#(a)(\tau) \neq \#(c)(\tau) \).

Not possible.

Similarly, not possible that \(y \) contains only \(a \)s, and \(v \) contains only \(c \)s.

Similarly, not possible that \(y \) contains only \(b \)s, and \(v \) contains only \(c \)s.

Must be that \(\tau \not\in L \). A contradiction.
We know:

\[xyzvw = a^j b^j c^j \]
\[|y| + |v| > 0. \]

We proved that \(\tau = xy^2 zv^2 w \in L \).

If \(y \) contains both \(a \) and \(b \), then, \(\tau = ...a...b...a...b... \).

Impossible, since \(\tau \in L = \{a^n b^n c^n \mid n \geq 0\} \).

Similarly, not possible that \(y \) contains both \(b \) and \(c \).

Similarly, not possible that \(v \) contains both \(a \) and \(b \).

Similarly, not possible that \(v \) contains both \(b \) and \(c \).

If \(y \) contains only \(a \)s, and \(v \) contains only \(b \)s, then... \(\#(a)(\tau) \neq \#(c)(\tau) \).

Not possible.

Similarly, not possible that \(y \) contains only \(a \)s, and \(v \) contains only \(c \)s.

Similarly, not possible that \(y \) contains only \(b \)s, and \(v \) contains only \(c \)s.

Must be that \(\tau \notin L \). A contradiction.
We know:
\[xyzvw = a^j b^j c^j \]
\[|y| + |v| > 0. \]

We proved that \(\tau = xy^2 zv^2 w \in L. \)

If \(y \) contains both \(a \) and \(b \), then, \(\tau = \ldots a \ldots b \ldots a \ldots b \ldots. \)
Impossible, since \(\tau \in L = \{ a^n b^n c^n \mid n \geq 0 \} \).

Similarly, not possible that \(y \) contains both \(b \) and \(c \).
Similarly, not possible that \(v \) contains both \(a \) and \(b \).
Similarly, not possible that \(v \) contains both \(b \) and \(c \).
If \(y \) contains only \(a \)s, and \(v \) contains only \(b \)s, then... \(\#(a)(\tau) \neq \#(c)(\tau) \).
Not possible.
Similarly, not possible that \(y \) contains only \(a \)s, and \(v \) contains only \(c \)s.
Similarly, not possible that \(y \) contains only \(b \)s, and \(v \) contains only \(c \)s.
Must be that \(\tau \notin L \). A contradiction.
We know:
\[xyzvw = a^j b^j c^j \]
\[|y| + |v| > 0. \]

We proved that \(\tau = xy^2 zv^2 w \in L \).

If \(y \) contains both \(a \) and \(b \), then, \(\tau = \ldots a \ldots b \ldots a \ldots b \ldots \).

Impossible, since \(\tau \in L = \{ a^n b^n c^n \mid n \geq 0 \} \).

Similarly, not possible that \(y \) contains both \(b \) and \(c \).

Similarly, not possible that \(v \) contains both \(a \) and \(b \).

Similarly, not possible that \(v \) contains both \(b \) and \(c \).

If \(y \) contains only \(a \)s, and \(v \) contains only \(b \)s, then... \(\#(a)(\tau) \neq \#(c)(\tau) \).

Not possible.

Similarly, not possible that \(y \) contains only \(a \)s, and \(v \) contains only \(c \)s.

Similarly, not possible that \(y \) contains only \(b \)s, and \(v \) contains only \(c \)s.

Must be that \(\tau \notin L \). A contradiction.
We know:
\[\text{xyzvw} = a^i b^i c^i \]
\[|y| + |v| > 0. \]

We proved that \(\tau = xy^2 zv^2 w \in L. \)

If \(y \) contains both \(a \) and \(b \), then, \(\tau = \ldots a \ldots b \ldots a \ldots b \ldots. \)
Impossible, since \(\tau \in L = \{ a^n b^n c^n \mid n \geq 0 \}. \)

Similarly, not possible that \(y \) contains both \(b \) and \(c \).

Similarly, not possible that \(v \) contains both \(a \) and \(b \).

Similarly, not possible that \(v \) contains both \(b \) and \(c \).

If \(y \) contains only \(a \)'s, and \(v \) contains only \(b \)'s, then... \(\#(a)(\tau) \neq \#(c)(\tau) \).
Not possible.

Similarly, not possible that \(y \) contains only \(a \)'s, and \(v \) contains only \(c \)'s.
Similarly, not possible that \(y \) contains only \(b \)'s, and \(v \) contains only \(c \)'s.

Must be that \(\tau \notin L \). A contradiction.
We know:
\[xyzvw = a^j b^j c^j \]
\[|y| + |v| > 0. \]
We proved that \(\tau = x y^2 z v^2 w \in L \).
If \(y \) contains both \(a \) and \(b \), then, \(\tau = \ldots a \ldots b \ldots a \ldots b \ldots \).
Impossible, since \(\tau \in L = \{ a^n b^n c^n | n \geq 0 \} \).
Similarly, not possible that \(y \) contains both \(b \) and \(c \).
Similarly, not possible that \(v \) contains both \(a \) and \(b \).
Similarly, not possible that \(v \) contains both \(b \) and \(c \).
If \(y \) contains only \(a \)s, and \(v \) contains only \(b \)s, then... \(\#(a)(\tau) \neq \#(c)(\tau) \).
Not possible.
Similarly, not possible that \(y \) contains only \(a \)s, and \(v \) contains only \(c \)s.
Similarly, not possible that \(y \) contains only \(b \)s, and \(v \) contains only \(c \)s.
Must be that \(\tau \notin L \). A contradiction.
We know:
\[xyzvw = a^j b^j c^j \]
\[|y| + |v| > 0. \]

We proved that \(\tau = xy^2 zv^2 w \in L. \)

If \(y \) contains both \(a \) and \(b \), then, \(\tau = \ldots a \ldots b \ldots a \ldots b \ldots \).

Impossible, since \(\tau \in L = \{ a^n b^n c^n \mid n \geq 0 \} \).

Similarly, not possible that \(y \) contains both \(b \) and \(c \).

Similarly, not possible that \(v \) contains both \(a \) and \(b \).

Similarly, not possible that \(v \) contains both \(b \) and \(c \).

If \(y \) contains only \(a \)s, and \(v \) contains only \(b \)s, then... \#(a)(\(\tau \)) \(\neq \#(c)(\tau) \).

Not possible.

Similarly, not possible that \(y \) contains only \(a \)s, and \(v \) contains only \(c \)s.

Similarly, not possible that \(y \) contains only \(b \)s, and \(v \) contains only \(c \)s.

Must be that \(\tau \notin L. \) A contradiction.
We know:
\[xyzvw = a^j b^j c^j \]
|y| + |v| > 0.

We proved that \(\tau = xy^2 zv^2 w \in L \).

If \(y \) contains both \(a \) and \(b \), then, \(\tau = \ldots a \ldots b \ldots a \ldots b \ldots \).
Impossible, since \(\tau \in L = \{a^n b^n c^n | n \geq 0\} \).

Similarly, not possible that \(y \) contains both \(b \) and \(c \).

Similarly, not possible that \(v \) contains both \(a \) and \(b \).

Similarly, not possible that \(v \) contains both \(b \) and \(c \).

If \(y \) contains only \(a \)s, and \(v \) contains only \(b \)s, then… \(\#(a)(\tau) \neq \#(c)(\tau) \).
Not possible.

Similarly, not possible that \(y \) contains only \(a \)s, and \(v \) contains only \(c \)s.

Similarly, not possible that \(y \) contains only \(b \)s, and \(v \) contains only \(c \)s.

Must be that \(\tau \notin L \). A contradiction.
We conclude...

Lemma

The language $L = \{ a^n b^n c^n \mid n \geq 0 \}$ is not CFL (i.e., there is no CFG for it).