6.5.2
Stating and proving the Myhill-Nerode Theorem
Claim (Just proved)

Let \(x, y \) be two distinct strings.
\[x \equiv_L y \iff x, y \text{ are indistinguishable for } L. \]

Corollary

If \(\equiv_L \) is finite with \(n \) equivalence classes then there is a fooling set \(F \) of size \(n \) for \(L \).

Corollary

If \(\equiv_L \) has infinite number of equivalence classes \(\implies \exists \) infinite fooling set for \(L \).
\(\implies L \) is not regular.
Claim (Just proved)

Let x, y be two distinct strings.

$x \equiv_L y \iff x, y$ are indistinguishable for L.

Corollary

If \equiv_L is finite with n equivalence classes then there is a fooling set F of size n for L.

Corollary

If \equiv_L has infinite number of equivalence classes $\implies \exists$ infinite fooling set for L.

$\implies L$ is not regular.
Claim (Just proved)

Let x, y be two distinct strings.

$x \equiv_L y \iff x, y$ are indistinguishable for L.

Corollary

If \equiv_L is finite with n equivalence classes then there is a fooling set F of size n for L.

Corollary

If \equiv_L has infinite number of equivalence classes $\Rightarrow \exists$ infinite fooling set for L.

$\Rightarrow L$ is not regular.
Equivalence classes as automata

Lemma

For all \(x, y \in \Sigma^* \), if \([x]_L = [y]_L\), then for any \(a \in \Sigma \), we have \([xa]_L = [ya]_L\).

Proof.

\([x] = [y] \implies \forall w \in \Sigma^*: xw \in L \iff yw \in L \implies \forall w' \in \Sigma^*: xaw' \in L \iff yaw' \in L \quad // \quad w = aw' \implies [xa]_L = [ya]_L\).
Lemma

For all \(x, y \in \Sigma^* \), if \([x]_L = [y]_L\), then for any \(a \in \Sigma\), we have \([xa]_L = [ya]_L\).

Proof.

\[
[x] = [y] \implies \forall w \in \Sigma^*: xw \in L \iff yw \in L
\]

\[
\implies \forall w' \in \Sigma^*: xaw' \in L \iff yaw' \in L \quad \text{// } w = aw'
\]

\[
\implies [xa]_L = [ya]_L.
\]
Lemma

For all $x, y \in \Sigma^*$, if $[x]_L = [y]_L$, then for any $a \in \Sigma$, we have $[xa]_L = [ya]_L$.

Proof.

$[x] = [y] \implies \forall w \in \Sigma^*: xw \in L \iff yw \in L$

$\implies \forall w' \in \Sigma^*: xaw' \in L \iff yaw' \in L$ // $w = aw'$

$\implies [xa]_L = [ya]_L$. \blacksquare
Lemma

For all $x, y \in \Sigma^*$, if $[x]_L = [y]_L$, then for any $a \in \Sigma$, we have $[xa]_L = [ya]_L$.

Proof.

$[x] = [y] \implies \forall w \in \Sigma^*: xw \in L \iff yw \in L \implies \forall w' \in \Sigma^*: xaw' \in L \iff yaw' \in L$ \hspace{1cm} // $w = aw'$

$\implies [xa]_L = [ya]_L$. \hfill \square
Lemma

If L has n distinct equivalence classes, then there is a DFA that accepts it using n states.

Proof.

Set of states: $Q = [L]$
Start state: $s = [\varepsilon]_L$.
Accept states: $A = \{[x]_L \mid x \in L\}$.
Transition function: $\delta([x]_L, a) = [xa]_L$.
$M = (Q, \Sigma, \delta, s, A)$: The resulting DFA.
Clearly, M is a DFA with n states, and it accepts L.

\square
Lemma

If \(L \) has \(n \) distinct equivalence classes, then there is a DFA that accepts it using \(n \) states.

Proof.

Set of states: \(Q = [L] \)
Start state: \(s = [\varepsilon]_L \).
Accept states: \(A = \{[x]_L \mid x \in L\} \).
Transition function: \(\delta([x]_L, a) = [xa]_L \).

\(M = (Q, \Sigma, \delta, s, A) \): The resulting DFA.
Clearly, \(M \) is a DFA with \(n \) states, and it accepts \(L \).
Lemma

If L has n distinct equivalence classes, then there is a DFA that accepts it using n states.

Proof.

Set of states: $Q = [L]$

Start state: $s = [\varepsilon]_L$.

Accept states: $A = \{[x]_L \mid x \in L\}$.

Transition function: $\delta([x]_L, a) = [xa]_L$.

$M = (Q, \Sigma, \delta, s, A)$: The resulting DFA.

Clearly, M is a DFA with n states, and it accepts L.
Lemma

If L *has* n *distinct equivalence classes, then there is a DFA that accepts it using* n *states.*

Proof.

Set of states: $Q = [L]$
Start state: $s = [\varepsilon]_L$.
Accept states: $A = \{[x]_L \mid x \in L\}$.
Transition function: $\delta([x]_L, a) = [xa]_L$.

$M = (Q, \Sigma, \delta, s, A)$: The resulting DFA.
Clearly, M is a DFA with n states, and it accepts L.

Lemma

If L has n distinct equivalence classes, then there is a DFA that accepts it using n states.

Proof.

Set of states: $Q = [L]$
Start state: $s = [[\varepsilon]]_L$.
Accept states: $A = \{[x]_L \mid x \in L\}$.
Transition function: $\delta([x]_L, a) = [xa]_L$.

$M = (Q, \Sigma, \delta, s, A)$: The resulting DFA.
Clearly, M is a DFA with n states, and it accepts L.

\[\square\]
Lemma

If \(L \) has \(n \) distinct equivalence classes, then there is a DFA that accepts it using \(n \) states.

Proof.

Set of states: \(Q = [L] \)
Start state: \(s = [\varepsilon]_L \).
Accept states: \(A = \{[x]_L | x \in L\} \).
Transition function: \(\delta([x]_L, a) = [xa]_L \).
\(M = (Q, \Sigma, \delta, s, A) \): The resulting DFA.

Clearly, \(M \) is a DFA with \(n \) states, and it accepts \(L \).
Theorem (Myhill-Nerode)

L is regular $\iff \equiv_L$ has a finite number of equivalence classes.
If \equiv_L is finite with n equivalence classes then there is a DFA M accepting L with exactly n states and this is the minimum possible.

Corollary

A language L is non-regular if and only if there is an infinite fooling set F for L.

Algorithmic implication: For every DFA M one can find in polynomial time a DFA M' such that $L(M) = L(M')$ and M' has the fewest possible states among all such DFAs.
Summary: A regular language L has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for L.
Exercise

1. Given two DFAs M_1, M_2 describe an efficient algorithm to decide if $L(M_1) = L(M_2)$.

2. Given DFA M, and two states q, q' of M, show an efficient algorithm to decide if q and q' are distinguishable. (Hint: Use the first part.)

3. Given a DFA M for a language L, describe an efficient algorithm for computing the minimal automata (as far as the number of states) that accepts L.