6.3.1 Exponential gap in number of states between DFA and NFA sizes
Exponential gap between NFA and DFA size

$L_4 = \{ w \in \{0, 1\}^* \mid w \text{ has a } 1 \text{ located } 4 \text{ positions from the end}\}$
Exponential gap between NFA and DFA size

\(L_k = \{ w \in \{0, 1\}^* |\ w \ has \ a \ 1 \ k \ positions \ from \ the \ end \} \)

Recall that \(L_k \) is accepted by a NFA \(N \) with \(k + 1 \) states.

Theorem

Every DFA that accepts \(L_k \) has at least \(2^k \) states.

Claim

\(F = \{ w \in \{0, 1\}^* : |w| = k \} \) is a fooling set of size \(2^k \) for \(L_k \).

Why?

- Suppose \(a_1a_2\ldots a_k \) and \(b_1b_2\ldots b_k \) are two distinct bitstrings of length \(k \)
- Let \(i \) be first index where \(a_i \neq b_i \)
- \(y = 0^{k-i-1} \) is a distinguishing suffix for the two strings
Exponential gap between NFA and DFA size

\[L_k = \{ w \in \{0, 1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \} \]

Recall that \(L_k \) is accepted by a NFA \(N \) with \(k + 1 \) states.

Theorem

Every DFA that accepts \(L_k \) has at least \(2^k \) states.

Claim

\(F = \{ w \in \{0, 1\}^* : |w| = k \} \) is a fooling set of size \(2^k \) for \(L_k \).

Why?

- Suppose \(a_1a_2\ldots a_k \) and \(b_1b_2\ldots b_k \) are two distinct bitstrings of length \(k \)
- Let \(i \) be first index where \(a_i \neq b_i \)
- \(y = 0^{k-i-1} \) is a distinguishing suffix for the two strings
Exponential gap between NFA and DFA size

\[L_k = \{ w \in \{0, 1\}^* | w \text{ has a } 1 \text{ } k \text{ positions from the end} \} \]

Recall that \(L_k \) is accepted by a NFA \(N \) with \(k + 1 \) states.

Theorem

Every DFA that accepts \(L_k \) has at least \(2^k \) states.

Claim

\(F = \{ w \in \{0, 1\}^* : |w| = k \} \) is a fooling set of size \(2^k \) for \(L_k \).

Why?

- Suppose \(a_1a_2 \ldots a_k \) and \(b_1b_2 \ldots b_k \) are two distinct bitstrings of length \(k \)
- Let \(i \) be first index where \(a_i \neq b_i \)
- \(y = 0^{k-i-1} \) is a distinguishing suffix for the two strings
Exponential gap between NFA and DFA size

\[L_k = \{ w \in \{0, 1\}^* \mid w \text{ has a 1 } k \text{ positions from the end} \} \]
Recall that \(L_k \) is accepted by a NFA \(N \) with \(k + 1 \) states.

Theorem

Every DFA that accepts \(L_k \) has at least \(2^k \) states.

Claim

\(F = \{ w \in \{0, 1\}^* : |w| = k \} \) is a fooling set of size \(2^k \) for \(L_k \).

Why?

- Suppose \(a_1a_2\ldots a_k \) and \(b_1b_2\ldots b_k \) are two distinct bitstrings of length \(k \)
- Let \(i \) be first index where \(a_i \neq b_i \)
- \(y = 0^{k-i-1} \) is a distinguishing suffix for the two strings
Exponential gap between NFA and DFA size

\[L_k = \{ w \in \{0, 1\}^* \mid w \text{ has a 1 } k \text{ positions from the end} \} \]

Recall that \(L_k \) is accepted by a NFA \(N \) with \(k + 1 \) states.

Theorem

Every DFA that accepts \(L_k \) has at least \(2^k \) states.

Claim

\(F = \{ w \in \{0, 1\}^* : |w| = k \} \) is a fooling set of size \(2^k \) for \(L_k \).

Why?

- Suppose \(a_1a_2 \ldots a_k \) and \(b_1b_2 \ldots b_k \) are two distinct bitstrings of length \(k \)
- Let \(i \) be first index where \(a_i \neq b_i \)
- \(y = 0^{k-i-1} \) is a distinguishing suffix for the two strings
How do we pick a fooling set \mathcal{F}?

- If x, y are in \mathcal{F} and $x \neq y$ they should be distinguishable! Of course.
- All strings in \mathcal{F} except maybe one should be prefixes of strings in the language L. For example if $L = \{0^k1^k \mid k \geq 0\}$ do not pick 1 and 10 (say). Why?
THE END

... (for now)