Proving Non-regularity

Lecture 6
Thursday, September 10, 2020
6.1

Not all languages are regular
Theorem

Languages accepted by DFA\(^s\), NFA\(^s\), and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA \(M\) can be represented as a string over a finite alphabet \(\Sigma\) by appropriate encoding.
- Hence number of regular languages is countably infinite.
- Number of languages is uncountably infinite.
- Hence there must be a non-regular language!
Regular Languages, DFAs, NFAs

Theorem

Languages accepted by **DFA**s, **NFA**s, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding.
- Hence number of regular languages is countably infinite.
- Number of languages is uncountably infinite.
- Hence there must be a non-regular language!
Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!
Theorem

Languages accepted by **DFA**s, **NFA**s, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each **DFA** M can be represented as a string over a finite alphabet Σ by appropriate encoding.
- Hence number of regular languages is **countably infinite**.
- Number of languages is **uncountably infinite**.
- Hence there must be a non-regular language!
Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding.
- Hence number of regular languages is **countably infinite**.
- Number of languages is **uncountably infinite**.
- Hence there must be a non-regular language!
Theorem

Languages accepted by DFA, NFA, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding.
- Hence number of regular languages is countably infinite.
- Number of languages is uncountably infinite.
- Hence there must be a non-regular language!
A direct proof

\[L = \{0^i 1^i \mid i \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots\} \]

Theorem

\[L \text{ is not regular.} \]
A Simple and Canonical Non-regular Language

\[L = \{0^k1^k \mid i \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots\} \]

Theorem

\[L \text{ is not regular.} \]

Question: Proof?

Intuition: Any program to recognize \(L \) seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?
A Simple and Canonical Non-regular Language

\[L = \{0^i1^i \mid i \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots\} \]

Theorem

\(L \) is not regular.

Question: Proof?

Intuition: Any program to recognize \(L \) seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?
A Simple and Canonical Non-regular Language

\[L = \{0^i 1^i \mid i \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots, \} \]

Theorem

\textit{L is not regular.}

Question: Proof?

Intuition: Any program to recognize \(L \) seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?
$L = \{0^k1^k \mid i \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots\}$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?
A Simple and Canonical Non-regular Language

$L = \{0^k1^k \mid i \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots\}$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?
Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.

Consider strings $\epsilon, 0, 00, 000, \cdots, 0^n$ total of $n + 1$ strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \leq i < j \leq n$. That is, M is in the same state after reading 0^i and 0^j where $i \neq j$.

M should accept 0^i1^i but then it will also accept 0^j1^i where $i \neq j$. This contradicts the fact that M accepts L. Thus, there is no DFA for L.
Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.

Consider strings $\epsilon, 0, 00, 000, \cdots, 0^n$ total of $n+1$ strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \leq i < j \leq n$.
That is, M is in the same state after reading 0^i and 0^j where $i \neq j$.

M should accept 0^i1^i but then it will also accept 0^j1^j where $i \neq j$.
This contradicts the fact that M accepts L. Thus, there is no DFA for L.
Proof by Contradiction

- Suppose \(L \) is regular. Then there is a DFA \(M \) such that \(L(M) = L \).

- Let \(M = (Q, \{0, 1\}, \delta, s, A) \) where \(|Q| = n \).

Consider strings \(\epsilon, 0, 00, 000, \cdots, 0^n \) total of \(n + 1 \) strings.

What states does \(M \) reach on the above strings? Let \(q_i = \delta^*(s, 0^i) \).

By pigeon hole principle \(q_i = q_j \) for some \(0 \leq i < j \leq n \).
That is, \(M \) is in the same state after reading \(0^i \) and \(0^j \) where \(i \neq j \).

\(M \) should accept \(0^i1^i \) but then it will also accept \(0^j1^i \) where \(i \neq j \).
This contradicts the fact that \(M \) accepts \(L \). Thus, there is no DFA for \(L \).
Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.

Consider strings $\epsilon, 0, 00, 000, \cdots, 0^n$ total of $n + 1$ strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \leq i < j \leq n$.
That is, M is in the same state after reading 0^i and 0^j where $i \neq j$.

M should accept 0^i1^i but then it will also accept 0^j1^i where $i \neq j$.
This contradicts the fact that M accepts L. Thus, there is no DFA for L.
Proof by Contradiction

- Suppose \(L \) is regular. Then there is a DFA \(M \) such that \(L(M) = L \).
- Let \(M = (Q, \{0, 1\}, \delta, s, A) \) where \(|Q| = n \).

Consider strings \(\epsilon, 0, 00, 000, \ldots, 0^n \) total of \(n + 1 \) strings.

What states does \(M \) reach on the above strings? Let \(q_i = \delta^*(s, 0^i) \).

By pigeon hole principle \(q_i = q_j \) for some \(0 \leq i < j \leq n \).
That is, \(M \) is in the same state after reading \(0^i \) and \(0^j \) where \(i \neq j \).

\(M \) should accept \(0^i 1^i \) but then it will also accept \(0^j 1^i \) where \(i \neq j \).
This contradicts the fact that \(M \) accepts \(L \). Thus, there is no DFA for \(L \).
THE END

...

(for now)