5.2
Closure Properties of Regular Languages
Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- Languages accepted by **DFA**s
- Languages accepted by **NFA**s

Regular language closed under many operations:

- union, concatenation, Kleene star via inductive definition or **NFA**s
- complement, union, intersection via **DFA**s
- homomorphism, inverse homomorphism, reverse, ...

Different representations allow for flexibility in proofs
Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- Languages accepted by **DFA**s
- Languages accepted by **NFA**s

Regular language closed under many operations:

- union, concatenation, Kleene star via inductive definition or **NFA**s
- complement, union, intersection via **DFA**s
- homomorphism, inverse homomorphism, reverse, ...

Different representations allow for flexibility in proofs
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{w \mid wx \in L, x \in \Sigma^*\}$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L.

$X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$
$Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Example: PREFIX

Let \(L \) be a language over \(\Sigma \).

Definition

\[
\text{PREFIX}(L) = \{w \mid wx \in L, x \in \Sigma^*\}
\]

Theorem

If \(L \) is regular then \(\text{PREFIX}(L) \) is regular.

Let \(M = (Q, \Sigma, \delta, s, A) \) be a \text{DFA} that recognizes \(L \)

\[
X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\} \quad Y = \{q \in Q \mid q \text{ can reach some state in } A\}
\]

\(Z = X \cap Y \)

Create new \text{DFA} \(M' = (Q, \Sigma, \delta, s, Z) \)

Claim: \(L(M') = \text{PREFIX}(L) \).
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{w \mid wx \in L, x \in \Sigma^*\}$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

$X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

$Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{w \mid wx \in L, x \in \Sigma^*\}$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

$X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

$Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{w \mid wx \in L, x \in \Sigma^*\}$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

$X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

$Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Example: PREFIX

Let L be a language over Σ.

Definition

$$\text{PREFIX}(L) = \{w \mid wx \in L, x \in \Sigma^*\}$$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

$X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

$Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{w | wx \in L, x \in \Sigma^*\}$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

$X = \{q \in Q | s \text{ can reach } q \text{ in } M\}$

$Y = \{q \in Q | q \text{ can reach some state in } A\}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Exercise: SUFFIX

Let L be a language over Σ.

Definition

$\text{SUFFIX}(L) = \{ w \mid xw \in L, x \in \Sigma^* \}$

Prove the following:

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.
Exercise: SUFFIX

An alternative “proof” using a figure
THE END

...

(for now)