5.1.3
Proof of correctness of conversion of NFA to DFA
Proof of Correctness

Theorem

Let \(N = (Q, \Sigma, s, \delta, A) \) be a NFA and let \(D = (Q', \Sigma, \delta', s', A') \) be a DFA constructed from \(N \) via the subset construction. Then \(L(N) = L(D) \).

Stronger claim:

Lemma

For every string \(w \), \(\delta_N^*(s, w) = \delta_D^*(s', w) \).

Proof by induction on \(|w| \).
Proof of Correctness

Theorem

Let $N = (Q, \Sigma, s, \delta, A)$ be a NFA and let $D = (Q', \Sigma, \delta', s', A')$ be a DFA constructed from N via the subset construction. Then $L(N) = L(D)$.

Stronger claim:

Lemma

For every string w, $\delta^*_N(s, w) = \delta^*_D(s', w)$.

Proof by induction on $|w|$.
Proof of Correctness

Theorem

Let \(N = (Q, \Sigma, s, \delta, A) \) be a NFA and let \(D = (Q', \Sigma, \delta', s', A') \) be a DFA constructed from \(N \) via the subset construction. Then \(L(N) = L(D) \).

Stronger claim:

Lemma

For every string \(w \), \(\delta^*_N(s, w) = \delta^*_D(s', w) \).

Proof by induction on \(|w| \).
Proof continued I

Lemma

For every string w, $\delta^*_N(s, w) = \delta^*_D(s', w)$.

Proof:

Base case: $w = \epsilon$.

$\delta^*_N(s, \epsilon) = \epsilon \text{reach}(s)$.

$\delta^*_D(s', \epsilon) = s' = \epsilon \text{reach}(s)$ by definition of s'.
Lemma

For every string w, $\delta^*_N(s, w) = \delta^*_D(s', w)$.

Inductive step: $w = xa$ (Note: suffix definition of strings)

$\delta^*_N(s, xa) = \bigcup_{p \in \delta^*_N(s, x)} \delta^*_N(p, a)$ by inductive definition of δ^*_N

$\delta^*_D(s', xa) = \delta_D(\delta^*_D(s, x), a)$ by inductive definition of δ^*_D

By inductive hypothesis: $Y = \delta^*_N(s, x) = \delta^*_D(s, x)$

Thus $\delta^*_N(s, xa) = \bigcup_{p \in Y} \delta^*_N(p, a) = \delta_D(Y, a)$ by definition of δ_D.

Therefore,

$\delta^*_N(s, xa) = \delta_D(Y, a) = \delta_D(\delta^*_D(s, x), a) = \delta^*_M(s', xa)$. which is what we need.
Lemma

For every string \(w \), \(\delta_N^*(s, w) = \delta_D^*(s', w) \).

Inductive step: \(w = xa \)
(Note: suffix definition of strings)
\[
\delta_N^*(s, xa) = \bigcup_{p \in \delta_N^*(s, x)} \delta_N^*(p, a)
\]
by inductive definition of \(\delta_N^* \)

\[
\delta_D^*(s', xa) = \delta_D(\delta_D^*(s, x), a)
\]
by inductive definition of \(\delta_D^* \)

By inductive hypothesis: \(Y = \delta_N^*(s, x) = \delta_D^*(s, x) \)

Thus \(\delta_N^*(s, xa) = \bigcup_{p \in Y} \delta_N^*(p, a) = \delta_D(Y, a) \) by definition of \(\delta_D \).

Therefore,
\[
\delta_N^*(s, xa) = \delta_D(Y, a) = \delta_D(\delta_D^*(s, x), a) = \delta_M^*(s', xa).
\]
which is what we need.
Lemma

For every string w, $\delta^*_N(s, w) = \delta^*_D(s', w)$.

Inductive step: $w = xa$
(Note: suffix definition of strings)

$\delta^*_N(s, xa) = \cup_{p \in \delta^*_N(s, x)} \delta^*_N(p, a)$ by inductive definition of δ^*_N

$\delta^*_D(s', xa) = \delta_D(\delta^*_D(s, x), a)$ by inductive definition of δ^*_D

By inductive hypothesis: $Y = \delta^*_N(s, x) = \delta^*_D(s, x)$

Thus $\delta^*_N(s, xa) = \cup_{p \in Y} \delta^*_N(p, a) = \delta_D(Y, a)$ by definition of δ_D.

Therefore,

$\delta^*_N(s, xa) = \delta_D(Y, a) = \delta_D(\delta^*_D(s, x), a) = \delta^*_M(s', xa)$. which is what we need.
Lemma

For every string \(w \), \(\delta^*_N(s, w) = \delta^*_D(s', w) \).

Inductive step: \(w = xa \) (Note: suffix definition of strings)

\[
\delta^*_N(s, xa) = \bigcup_{p \in \delta^*_N(s, x)} \delta^*_N(p, a)
\]
by inductive definition of \(\delta^*_N \)

\[
\delta^*_D(s', xa) = \delta_D(\delta^*_D(s, x), a)
\]
by inductive definition of \(\delta^*_D \)

By inductive hypothesis: \(Y = \delta^*_N(s, x) = \delta^*_D(s, x) \)

Thus \(\delta^*_N(s, xa) = \bigcup_{p \in Y} \delta^*_N(p, a) = \delta_D(Y, a) \) by definition of \(\delta_D \).

Therefore,

\[
\delta^*_N(s, xa) = \delta_D(Y, a) = \delta_D(\delta^*_D(s, x), a) = \delta^*_M(s', xa). \tag{which is what we need}
\]
Lemma

For every string w, $\delta^*_N(s, w) = \delta^*_D(s', w)$.

Inductive step: $w = xa$
(Note: suffix definition of strings)

$\delta^*_N(s, xa) = \bigcup_{p \in \delta^*_N(s, x)} \delta^*_N(p, a)$ by inductive definition of δ^*_N

$\delta^*_D(s', xa) = \delta_D(\delta^*_D(s, x), a)$ by inductive definition of δ^*_D

By inductive hypothesis: $Y = \delta^*_N(s, x) = \delta^*_D(s, x)$

Thus $\delta^*_N(s, xa) = \bigcup_{p \in Y} \delta^*_N(p, a) = \delta_D(Y, a)$ by definition of δ_D.

Therefore,

$\delta^*_N(s, xa) = \delta_D(Y, a) = \delta_D(\delta^*_D(s, x), a) = \delta^*_M(s', xa)$. which is what we need.
THE END
...
(for now)