4.3 Closure Properties of NFAs
Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement
Closure under union

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.
Closure under union

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

```
q_1 \quad N_1 \quad f_1
```

```
q_2 \quad N_2 \quad f_2
```
Closure under concatenation

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

![Diagram showing closure under concatenation](image)
Theorem

For any two \textbf{NFA}s N_1 and N_2 there is a \textbf{NFA} N such that $L(N) = L(N_1) \cdot L(N_2)$.
Closure under Kleene star

Theorem

For any \(\text{NFA } N_1 \) there is a \(\text{NFA } N \) such that \(L(N) = (L(N_1))^* \).
Closure under Kleene star

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?
Closure under Kleene star

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^$.***

Does not work! Why?
Closure under Kleene star

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.
THE END

...

(for now)