4.2
Constructing NFAs
DFAs and NFAs

- Every **DFA** is a **NFA** so **NFA**s are at least as powerful as **DFA**s.
- **NFA**s prove ability to “guess and verify” which simplifies design and reduces number of states
- Easy proofs of some closure properties
Strings that represent decimal numbers.
Example

Strings that represent decimal numbers.
Example

- \{\text{strings that contain CS374 as a substring}\}
- \{\text{strings that contain CS374 or CS473 as a substring}\}
- \{\text{strings that contain CS374 and CS473 as substrings}\}
Example

- \{\text{strings that contain CS374 as a substring}\}
- \{\text{strings that contain CS374 or CS473 as a substring}\}
- \{\text{strings that contain CS374 and CS473 as substrings}\}
Example

- \{\text{strings that contain CS374 as a substring}\}
- \{\text{strings that contain CS374 or CS473 as a substring}\}
- \{\text{strings that contain CS374 and CS473 as substrings}\}
Example

$L_k = \{\text{bitstrings that have a 1 \, } k \text{ positions from the end}\}$
DFA for same task is much bigger...

\[L_4 = \{\text{bitstrings that have a } 1 \text{ in fourth position from the end}\} \]
A simple transformation

Theorem

For every NFA N there is another NFA N' such that $L(N) = L(N')$ and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state s of N is different from f
THE END
...
(for now)