3.4

Product Construction
Question: Are languages accepted by **DFA**s closed under union? That is, given **DFA**s M_1 and M_2 is there a **DFA** that accepts $L(M_1) \cup L(M_2)$?

How about intersection $L(M_1) \cap L(M_2)$?

Idea from programming: on input string w

- Simulate M_1 on w
- Simulate M_2 on w
- If both accept then $w \in L(M_1) \cap L(M_2)$. If at least one accepts then $w \in L(M_1) \cup L(M_2)$.
- **Catch:** We want a single **DFA** M that can only read w once.
- **Solution:** Simulate M_1 and M_2 in parallel by keeping track of states of both machines.
Question: Are languages accepted by DFA's closed under union? That is, given DFA's M_1 and M_2 is there a DFA that accepts $L(M_1) \cup L(M_2)$? How about intersection $L(M_1) \cap L(M_2)$?

Idea from programming: on input string w

- Simulate M_1 on w
- Simulate M_2 on w
- If both accept then $w \in L(M_1) \cap L(M_2)$. If at least one accepts then $w \in L(M_1) \cup L(M_2)$.

Catch: We want a single DFA M that can only read w once.

Solution: Simulate M_1 and M_2 in parallel by keeping track of states of both machines.
Union and Intersection

Question: Are languages accepted by DFAs closed under union? That is, given DFAs M_1 and M_2 is there a DFA that accepts $L(M_1) \cup L(M_2)$? How about intersection $L(M_1) \cap L(M_2)$?

Idea from programming: on input string w
- Simulate M_1 on w
- Simulate M_2 on w
- If both accept than $w \in L(M_1) \cap L(M_2)$. If at least one accepts then $w \in L(M_1) \cup L(M_2)$.
- **Catch:** We want a single DFA M that can only read w once.
- **Solution:** Simulate M_1 and M_2 in parallel by keeping track of states of both machines.
Union and Intersection

Question: Are languages accepted by DFAs closed under union? That is, given DFAs M_1 and M_2 is there a DFA that accepts $L(M_1) \cup L(M_2)$?

How about intersection $L(M_1) \cap L(M_2)$?

Idea from programming: on input string w

- Simulate M_1 on w
- Simulate M_2 on w
- If both accept than $w \in L(M_1) \cap L(M_2)$. If at least one accepts then $w \in L(M_1) \cup L(M_2)$.
- **Catch:** We want a single DFA M that can only read w once.
- **Solution:** Simulate M_1 and M_2 in parallel by keeping track of states of both machines
Example

\[M_1 \] accepts \(\#0 = \text{odd} \)

\[M_2 \] accepts \(\#1 = \text{odd} \)
Example

M_1 accepts #0 = odd

M_2 accepts #1 = odd

Cross-product machine
Example II

Accept all binary strings of length divisible by 3 and 5
Product construction for intersection

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \text{ and } M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \rightarrow Q \) where
 \[
 \delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))
 \]
- \(A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\} \)

Theorem

\[L(M) = L(M_1) \cap L(M_2). \]
Product construction for intersection

\(M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \) and \(M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \)

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \rightarrow Q \) where
 \[
 \delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))
 \]
- \(A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\} \)

Theorem

\(L(M) = L(M_1) \cap L(M_2). \)
Product construction for intersection

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \] and \[M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \[M = (Q, \Sigma, \delta, s, A) \] where

- \(Q = Q_1 \times Q_2 = \{ (q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2 \} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \rightarrow Q \) where
 \[
 \delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))
 \]

- \(A = A_1 \times A_2 = \{ (q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2 \} \)

Theorem

\[L(M) = L(M_1) \cap L(M_2). \]
Product construction for intersection

$M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1)$ and $M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

- $Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$
- $s = (s_1, s_2)$
- $\delta : Q \times \Sigma \rightarrow Q$ where
 $$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$
- $A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$

Theorem

$L(M) = L(M_1) \cap L(M_2)$.
Product construction for intersection

$M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1)$ and $M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

- $Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$
- $s = (s_1, s_2)$
- $\delta : Q \times \Sigma \rightarrow Q$ where
 \[\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]
- $A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$

Theorem

$L(M) = L(M_1) \cap L(M_2)$.
Product construction for intersection

$M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1)$ and $M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

- $Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$
- $s = (s_1, s_2)$
- $\delta : Q \times \Sigma \rightarrow Q$ where
 \[
 \delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))
 \]
- $A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$

Theorem

$L(M) = L(M_1) \cap L(M_2)$.
Product construction for intersection

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \text{ and } M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \\{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \rightarrow Q \) where
 \[
 \delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))
 \]
- \(A = A_1 \times A_2 = \\{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\} \)

Theorem

\[L(M) = L(M_1) \cap L(M_2). \]
Product construction for intersection

\(M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \) and \(M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \)

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \rightarrow Q \) where
 \[\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]
- \(A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\} \)

Theorem

\(L(M) = L(M_1) \cap L(M_2). \)
Product construction for intersection

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \text{ and } M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \rightarrow Q \) where
 \[
 \delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))
 \]
- \(A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\} \)

Theorem

\[L(M) = L(M_1) \cap L(M_2). \]
Product construction for intersection

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \text{ and } M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \rightarrow Q \) where
 \[
 \delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))
 \]
- \(A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\} \)

Theorem

\[L(M) = L(M_1) \cap L(M_2). \]
Correctness of construction

Lemma

For each string w, $\delta^*(s, w) = (\delta_1^*(s_1, w), \delta_2^*(s_2, w))$.

Exercise: Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on $|w|$.
Correctness of construction

Lemma

For each string w, $\delta^*(s, w) = (\delta_1^*(s_1, w), \delta_2^*(s_2, w))$.

Exercise: Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on $|w|$.
Correctness of construction

Lemma

For each string \(w \), \(\delta^*(s, w) = (\delta_1^*(s_1, w), \delta_2^*(s_2, w)) \).

Exercise: Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on \(|w| \)
Product construction for union

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \text{ and } M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \to Q \) where
 \[\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]
- \(A = \{(q_1, q_2) \mid q_1 \in A_1 \text{ or } q_2 \in A_2\} \)

Theorem

\[L(M) = L(M_1) \cup L(M_2). \]
Product construction for union

\[M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1) \text{ and } M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2) \]

Create \(M = (Q, \Sigma, \delta, s, A) \) where

- \(Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\} \)
- \(s = (s_1, s_2) \)
- \(\delta : Q \times \Sigma \to Q \) where
 \[\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]
- \(A = \{(q_1, q_2) \mid q_1 \in A_1 \text{ or } q_2 \in A_2\} \)

Theorem

\[L(M) = L(M_1) \cup L(M_2). \]
Set Difference

Theorem

\(M_1, M_2 \) DFA\(s. \) There is a DFA \(M \) such that \(L(M) = L(M_1) \setminus L(M_2). \)

Exercise: Prove the above using two methods.

- Using a direct product construction
- Using closure under complement and intersection and union
Question: Why are DFAs required to only move right? Can we allow DFA to scan back and forth? Caveat: Tape is read-only so only memory is in machine’s state.

- Can define a formal notion of a “2-way” DFA
- Can show that any language recognized by a 2-way DFA can be recognized by a regular (1-way) DFA
- Proof is tricky simulation via NFAs
Question: Why are DFAs required to only move right?
Can we allow DFA to scan back and forth? **Caveat:** Tape is read-only so only memory is in machine’s state.

- Can define a formal notion of a “2-way” DFA
- Can show that any language recognized by a 2-way DFA can be recognized by a regular (1-way) DFA
- Proof is tricky simulation via NFAs
THE END

...

(for now)