3.1.1
Graphical representation of DFA
Directed graph with nodes representing **states** and edge/arcs representing **transitions** labeled by symbols in Σ

For each state (vertex) q and symbol $a \in \Sigma$ there is **exactly** one outgoing edge labeled by a

Initial/start state has a pointer (or labeled as s, q_0 or “start”)

Some states with double circles labeled as accepting/final states
Where does 001 lead?
Where does 10010 lead?
Which strings end up in accepting state?
Can you prove it?
Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.
Where does 001 lead?
Where does 10010 lead?
Which strings end up in accepting state?
Can you prove it?
Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.
Where does 001 lead?
Where does 10010 lead?
Which strings end up in accepting state?
Can you prove it?

Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.
Where does 001 lead?
Where does 10010 lead?
Which strings end up in accepting state?
Can you prove it?
Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.
Where does 001 lead?
Where does 10010 lead?
Which strings end up in accepting state?
Can you prove it?
Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.
Definition

A DFA M accepts a string w iff the unique walk starting at the start state and spelling out w ends in an accepting state.
Definition

A DFA M accepts a string w iff the unique walk starting at the start state and spelling out w ends in an accepting state.

Definition

The language accepted (or recognized) by a DFA M is denoted by $L(M)$ and defined as:

$$L(M) = \{ w | M \text{ accepts } w \}.$$
“M accepts language L” does not mean simply that that M accepts each string in L.

It means that M accepts each string in L and no others. Equivalently M accepts each string in L and does not accept/rejects strings in $\Sigma^* \setminus L$.

M “recognizes” L is a better term but “accepts” is widely accepted (and recognized) (joke attributed to Lenny Pitt)
“M accepts language L” does not mean simply that M accepts each string in L. It means that M accepts each string in L and no others. Equivalently M accepts each string in L and does not accept/rejects strings in $\Sigma^* \setminus L$.

M “recognizes” L is a better term but “accepts” is widely accepted (and recognized) (joke attributed to Lenny Pitt)
THE END

...

(for now)