2.2
Regular Expressions
Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50’s: Stephen Kleene
 who has a star names after him.
Inductive Definition

A regular expression r over an alphabet Σ is one of the following:

Base cases:
- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,
- $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$
- $(r_1 \cdot r_2) = r_1 \cdot r_2 = (r_1 r_2)$ denotes the language $R_1 R_2$
- $(r_1)^*$ denotes the language R_1^*
Inductive Definition

A regular expression r over an alphabet Σ is one of the following:

Base cases:
- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,
- $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$
- $(r_1 \cdot r_2) = r_1 \cdot r_2 = (r_1 r_2)$ denotes the language $R_1 R_2$
- $(r_1)^*$ denotes the language R_1^*
<table>
<thead>
<tr>
<th>Regular Languages</th>
<th>Regular Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>∅ regular</td>
<td>∅ denotes ∅</td>
</tr>
<tr>
<td>{ε} regular</td>
<td>ε denotes {ε}</td>
</tr>
<tr>
<td>{a} regular for a ∈ Σ</td>
<td>a denote {a}</td>
</tr>
<tr>
<td>R₁ ∪ R₂ regular if both are</td>
<td>r₁ + r₂ denotes R₁ ∪ R₂</td>
</tr>
<tr>
<td>R₁ R₂ regular if both are</td>
<td>r₁ • r₂ denotes R₁ R₂</td>
</tr>
<tr>
<td>R* is regular if R is</td>
<td>r* denote R*</td>
</tr>
</tbody>
</table>

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language.
For a regular expression \(r \), \(L(r) \) is the language denoted by \(r \). Multiple regular expressions can denote the same language!

Example: \((0 + 1) \) and \((1 + 0) \) denote same language \(\{0, 1\} \)

- Two regular expressions \(r_1 \) and \(r_2 \) are equivalent if \(L(r_1) = L(r_2) \).
- Omit parenthesis by adopting precedence order: \(\ast \), concatenate, \(+ \).

Example: \(r^\ast s + t = ((r^\ast)s) + t \)

- Omit parenthesis by associativity of each of these operations.
 Example: \(rst = (rs)t = r(st) \), \(r + s + t = r + (s + t) = (r + s) + t \).

- Superscript \(+ \). For convenience, define \(r^+ = rr^\ast \). Hence if \(L(r) = R \) then \(L(r^+) = R^+ \).
- Other notation: \(r + s \), \(r \cup s \), \(r|s \) all denote union. \(rs \) is sometimes written as \(r \cdot s \).
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$

Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

Omit parenthesis by adopting precedence order: \ast, concatenate, \oplus.

Example: $r^\ast s + t = ((r^\ast)s) + t$

Omit parenthesis by associativity of each of these operations.

Example: $rst = (rs)t = r(st)$, $r + s + t = r + (s + t) = (r + s) + t$.

Superscript \oplus. For convenience, define $r^\oplus = rr^\ast$. Hence if $L(r) = R$ then $L(r^\oplus) = R^\oplus$.

Other notation: $r + s$, $r \cup s$, $r|s$ all denote union. rs is sometimes written as $r \cdot s$.

Notation and Parenthesis
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$

Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

Omit parenthesis by adopting precedence order: \ast, concatenate, $+$.

Example: $r^*s + t = ((r^*)s) + t$

Omit parenthesis by associativity of each of these operations.

Example: $rst = (rs)t = r(st)$, $r + s + t = r + (s + t) = (r + s) + t$.

Superscript $+$. For convenience, define $r^+ = rr^*$. Hence if $L(r) = R$ then $L(r^+) = R^+$.

Other notation: $r + s$, $r \cup s$, $r | s$ all denote union. rs is sometimes written as $r \cdot s$.

Har-Peled (UIUC)
CS374
Fall 2020
16 / 27
Notation and Parenthesis

For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$

Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

Omit parenthesis by adopting precedence order: \ast, concatenate, \oplus.

Example: $r \ast s + t = ((r \ast s) + t$

Omit parenthesis by associativity of each of these operations.

Example: $rst = (rs)t = r(st)$, $r + s + t = r + (s + t) = (r + s) + t$.

Superscript \ast. For convenience, define $r^+ = rr^\ast$. Hence if $L(r) = R$ then $L(r^+) = R^+$.

Other notation: $r + s$, $r \cup s$, $r | s$ all denote union. rs is sometimes written as $r \cdot s$.
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote same language \{0, 1\}

Two regular expressions r_1 and r_2 are **equivalent** if $L(r_1) = L(r_2)$.

Omit parenthesis by adopting precedence order: \ast, concatenate, \oplus.

Example: $r^\ast s + t = ((r^\ast)s) + t$

Omit parenthesis by associativity of each of these operations.

Example: $rst = (rs)t = r(st)$, $r + s + t = r + (s + t) = (r + s) + t$.

Superscript \oplus. For convenience, define $r^\oplus = rr^\ast$. Hence if $L(r) = R$ then $L(r^\oplus) = R^\oplus$.

Other notation: $r + s$, $r \cup s$, $r | s$ all denote union. rs is sometimes written as $r \bullet s$.
For a regular expression \(r \), \(L(r) \) is the language denoted by \(r \). Multiple regular expressions can denote the same language!

Example: \((0 + 1)\) and \((1 + 0)\) denote same language \(\{0, 1\}\)

Two regular expressions \(r_1 \) and \(r_2 \) are equivalent if \(L(r_1) = L(r_2) \).

Omit parenthesis by adopting precedence order: \(*\), concatenate, \(+\).

Example: \(r^*s + t = ((r^*)s) + t \)

Omit parenthesis by associativity of each of these operations.

Example: \(rst = (rs)t = r(st) \), \(r + s + t = r + (s + t) = (r + s) + t \).

Superscript \(+\). For convenience, define \(r^+ = rr^* \). Hence if \(L(r) = R \) then \(L(r^+) = R^+ \).

Other notation: \(r + s \), \(r \cup s \), \(r|s \) all denote union. \(rs \) is sometimes written as \(r \cdot s \).
Skills

- Given a language L “in mind” (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression r we would like to “understand” $L(r)$ (say by giving an English description)
Skills

- Given a language L “in mind” (say an English description) we would like to write a regular expression for L (if possible).
- Given a regular expression r we would like to “understand” $L(r)$ (say by giving an English description).
THE END

...

(for now)