1.2 Countable sets, countably infinite sets, and languages
A set X is countable, if its elements can be counted. There exists an injective mapping from X to natural numbers $\mathbb{N} = \{1, 2, 3, \ldots\}$.

Example
All finite sets are countable: $\{aba, ima, saba, safta, uma, upa\}$.

Example
$\mathbb{N} \times \mathbb{N} = \{(i, j) \mid i, j \in \mathbb{N}\}$ is countable.

Proof: $f(i, j) = 2^i 3^j$.
Definition

A set X is countable, if its elements can be counted. There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, \ldots\}$.

Example

All finite sets are countable: $\{aba, ima, saba, safta, uma, upa\}$.

Example

$\mathbb{N} \times \mathbb{N} = \{(i,j) \mid i, j \in \mathbb{N}\}$ is countable.

Proof: $f(i, j) = 2^i3^j$.

Har-Peled (UIUC) CS374 Fall 2020 19 / 53
A set X is **countable**, if its elements can be counted. There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, \ldots\}$.

Example: All finite sets are countable: \{\textit{aba, ima, saba, safta, uma, upa}\}.

Example: $\mathbb{N} \times \mathbb{N} = \{(i, j) \mid i, j \in \mathbb{N}\}$ is countable.

Proof: $f(i, j) = 2^i 3^j$.

Countable sets

Definition
A set X is **countable**, if its elements can be counted.
There exists an injective mapping from X to natural numbers $\mathbb{N} = \{1, 2, 3, \ldots\}$.

Example
All finite sets are countable: $\{aba, ima, saba, safta, uma, upa\}$.

Example
$\mathbb{N} \times \mathbb{N} = \{(i, j) \mid i, j \in \mathbb{N}\}$ is countable.

: Proof: $f(i, j) = 2^i 3^j$.

Har-Peled (UIUC)
CS374
Fall 2020
19 / 53
$\mathbb{N} \times \mathbb{N}$ is countable
\(\mathbb{N} \times \mathbb{N} \) is countable
A set X is countably infinite (countable and infinite) if there is a bijection f between the natural numbers and X.

Alternatively: X is countably infinite if X is an infinite set and there enumeration of elements of X.
The set of all strings is countable

Theorem

Σ^* *is countable for any finite* Σ.

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Example: $\{0, 1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}$.

$\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, \ldots\}$
The set of all strings is countable

Theorem

Σ^* is countable for any finite Σ.

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Example: $\{0, 1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}$.
$\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, \ldots\}$
The set of all strings is countable

Theorem

Σ^* is countable for any finite Σ.

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Example: $\{0, 1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}$.
$\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, \ldots\}$
The set of all strings is countable

Theorem

Σ^* is countable for any finite Σ.

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Example: \(\{0, 1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}\).
\(\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, \ldots\}\)
Exercise 1

Question: Is $\Sigma^* \times \Sigma^* = \{(x, y) \mid x, y \in \Sigma^*\}$ countable?

Question: Is $\Sigma^* \times \Sigma^* \times \Sigma^* = \{(x, y, z) \mid x, y, x \in \Sigma^*\}$ countable?
Question: Is $\Sigma^* \times \Sigma^* = \{(x, y) \mid x, y \in \Sigma^*\}$ countable?

Question: Is $\Sigma^* \times \Sigma^* \times \Sigma^* = \{(x, y, z) \mid x, y, z \in \Sigma^*\}$ countable?
Exercise II

Answer the following questions taking $\Sigma = \{0, 1\}$.

1. Is a finite set countable?
2. X is countable, and the set $Y \subseteq X$, then is the set Y countable?
3. If X and Y are countable, is $X \setminus Y$ countable?
4. Are all infinite sets countably infinite?
5. If X_i is a countable infinite set, for $i = 1, \ldots, 700$, is $\bigcup_i X_i$ countable infinite?
6. If X_i is a countable infinite set, for $i = 1, \ldots, n$, is $\bigcup_i X_i$ countable infinite?
7. Let X be a countable infinite set, and consider its power set

$$2^X = \{Y \mid Y \subseteq x\}.$$

The statement “the set 2^X is countable” is correct?
THE END

...

(for now)