
Solutions for Discussion 5a: Wednesday, September 23, 2020
Version: 1.1 CS/ECE 374: Algorithms & Models of Computation, Fall 2020

Prove that the following languages are undecidable.

See outline of how to solve such problems in the original problem set.

1 AcceptIllini := {〈M〉 |M accepts the string ILLINI}

Solution:
For the sake of argument, suppose there is an algorithm DecideAcceptIllini that correctly decides
the language AcceptIllini. Then we can solve the halting problem as follows:

DecideHalt(〈M,w〉):
Encode the following Turing machine M ′:

M ′(x):
run M on input w
return True

if DecideAcceptIllini(〈M ′〉)
return True

else
return False

We prove this reduction correct as follows:

=⇒ Suppose M halts on input w.
Then M ′ accepts every input string x.
In particular, M ′ accepts the string ILLINI.
So DecideAcceptIllini accepts the encoding 〈M ′〉.
So DecideHalt correctly accepts the encoding 〈M,w〉.

⇐= Suppose M does not halt on input w.
Then M ′ diverges on every input string x.
In particular, M ′ does not accept the string ILLINI.
So DecideAcceptIllini rejects the encoding 〈M ′〉.
So DecideHalt correctly rejects the encoding 〈M,w〉.

In both cases, DecideHalt is correct. But that’s impossible, because Halt is undecidable. We conclude
that the algorithm DecideAcceptIllini does not exist.

As usual for undecidablility proofs, this proof invokes four distinct Turing machines:

• The hypothetical algorithm DecideAcceptIllini.
• The new algorithm DecideHalt that we construct in the solution.
• The arbitrary machine M whose encoding is part of the input to DecideHalt.
• The special machine M ′ whose encoding DecideHalt constructs (from the encoding of M and w)

and then passes to DecideAcceptIllini.

1



2 AcceptThree := {〈M〉 |M accepts exactly three strings}

Solution:
For the sake of argument, suppose there is an algorithm DecideAcceptThree that correctly decides
the language AcceptThree. Then we can solve the halting problem as follows:

DecideHalt(〈M,w〉):
Encode the following Turing machine M ′:
M ′(x):
run M on input w
if x = ε or x = 0 or x = 1

return True
else

return False

if DecideAcceptThree(〈M ′〉)
return True

else
return False

We prove this reduction correct as follows:

=⇒ Suppose M halts on input w.
Then M ′ accepts exactly three strings: ε, 0, and 1.
So DecideAcceptThree accepts the encoding 〈M ′〉.
So DecideHalt correctly accepts the encoding 〈M,w〉.

⇐= Suppose M does not halt on input w.
Then M ′ diverges on every input string x.
In particular, M ′ does not accept exactly three strings (because 0 6= 3).
So DecideAcceptThree rejects the encoding 〈M ′〉.
So DecideHalt correctly rejects the encoding 〈M,w〉.

In both cases, DecideHalt is correct. But that’s impossible, because Halt is undecidable. We conclude
that the algorithm DecideAcceptThree does not exist.

3 AcceptPalindrome :=
{
〈M〉

∣∣M accepts at least one palindrome
}

Solution:
For the sake of argument, suppose there is an algorithm DecideAcceptPalindrome that correctly
decides the language AcceptPalindrome. Then we can solve the halting problem as follows:

DecideHalt(〈M,w〉):
Encode the following Turing machine M ′:

M ′(x):
run M on input w
return True

if DecideAcceptPalindrome(〈M ′〉)
return True

else
return False

2



We prove this reduction correct as follows:

=⇒ Suppose M halts on input w.
Then M ′ accepts every input string x.
In particular, M ′ accepts the palindrome RACECAR.
So DecideAcceptPalindrome accepts the encoding 〈M ′〉.
So DecideHalt correctly accepts the encoding 〈M,w〉.

⇐= Suppose M does not halt on input w.
Then M ′ diverges on every input string x.
In particular, M ′ does not accept any palindromes.
So DecideAcceptPalindrome rejects the encoding 〈M ′〉.
So DecideHalt correctly rejects the encoding 〈M,w〉.

In both cases, DecideHalt is correct. But that’s impossible, because Halt is undecidable. We conclude
that the algorithm DecideAcceptPalindrome does not exist.

Yes, this is exactly the same proof as for problem 1.

4 Prove that the following language is undecidable:

L = {〈M〉 |M is a Turing machine, and L(M) is decidable but not context free} .

Solution:

Lemma 0.1. The language L is undecidable.

Proof: We assume, for the sake of contradiction, that L is decidable. Namely, there is Turing machine
N that decides it. That is, a Turing machine that always stop on any input, and accept only inputs
〈M〉 such that 〈M〉 ∈ L.

We show a reduction from the Halting problem, which its associated language is

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

We know that this language is undecidable (that is, there is no Turing machine that always stop, and
accept this language).

So, we are given an instance 〈M,w〉 of Halting, and we want to decide if it is in ATM , using the given
N . To this end, we create a new program (i.e., Turing machine):

f(〈M,w〉) = 〈M ′〉 =

Input: x
Code:

r ←Run M on w
if r = accept and x ∈ L∗ =

{
0i1i2i3i

∣∣ i ≥ 0
}

then
return Accept

else
return Reject

Clearly, the TM M ′ and its encoding can be computed from 〈M,w〉 (it is essentially simple text manip-
ulation). We now feed 〈M ′〉 into the decider N for L. If M accepts w, then the language of M ′ is L∗

which is decidable but not context-free (see pre-recorded lecture 7.8 for a proof of that, or just accept

3



this as true). If M does not accept w, than L(M ′) = ∅, which is definitely a context-free language (the
empty language is also regular).

Formally, now create a new decider for ATM using N . Specifically, the new decider is the following.

NewHaltingDecider(〈m,w〉):
Compute 〈M ′〉 ← f(〈M,w〉)
return N(〈M ′〉)

If N always stops, and decides L, then NewHaltingDecider always stops, and decides ATM. Indeed,
if N accepts 〈M ′〉, then M accepts w. Similarly, if N rejects 〈M ′〉, then M either rejects w, or M never
stops in w. In either case, the new decider NewHaltingDecider returns the right result. But this is
impossible, because by the Halting Theorem, the language ATM does not have a decider.

4


