
HW 8: Extra problems Instructors: Har-Peled, Kani, and Miller

CS/ECE 374: Algorithms & Models of Computation, Fall 2020 Version: 1.0

1 In the lab you saw how to compute s-t shortest walks efficiently when the graph has a single
negative length edge. The running time is asymptotically the same as using Dijkstra’s algorithm.
Generalize this to the setting where the graph has two negative length edges.

2 See HW 8 problems from Fall 2016 available at https://courses.engr.illinois.edu/cs374/
fa2016/homework/hw8.pdf.

3 Given a directed graph G = (V,E) with non-negative edge lengths, and two nodes s, t, the bot-
tlenect length of a path P from s to t is the maximum edge length on P . The bottleneck distance
from s to t is defined to be the smallest bottleneck path legnth among all paths from s to t.
Describe an algorithm to compute the bottleneck shortest path distances from s to every node in
G by adapting Dijkstra’s algorithm. Can you also do it via a reduction to the standard shortest
path problem?

4 Let G = (V,E) be a connected directed graph with non-negative edge weights, let s and t be
vertices of G, and let H be a subgraph of G obtained by deleting some edges. Suppose we want to
reinsert exactly one edge from G back into H, so that the shortest path from s to t in the resulting
graph is as short as possible. Describe and analyze an algorithm that chooses the best edge to
reinsert. Ideally the running time of your algorithm should be asymptotically the same as that of
running Dijkstra’s algorithm.

5 Let G = (V,E) be a directed graph. Describe a linear-time algorithm that given G, a node s ∈ V
and an integer k decides whether there is a walk in G starting at s that visits at least k distinct
nodes. The following questions may help you.

• What is the answer if G is strongly connected?
• How would you solve the problem if G is a DAG?

6 Let G = (V,E) a directed graph with non-negative edge lengths. Let R ⊂ E and B ⊂ E be red
and blue edges (the rest are not colored). Given s, t and integers hr and hb describe an efficient
algorithm to find the length of a shortest s-t path that contains at most hr red edges and at most
hb blue edges.

7 (Hard.) Although we typically speak of “the” shortest path between two nodes, a single graph
could contain several minimum-length paths with the same endpoints.

1
2

2
3 5

3 2
1

1
1

2

4

2 4

3 5
1

2
2
3 5

3 2
1

1
1

2

4

2 4

3 5
1

2
2
3 5

3 2
1

1
1

2

4

2 4

3 5

14

1
2

2
3 5

3 2
1

1
1

2

4

2 4

3 5

14 14 14

Four (of many) equal-length shortest paths.

1

https://courses.engr.illinois.edu/cs374/fa2016/homework/hw8.pdf
https://courses.engr.illinois.edu/cs374/fa2016/homework/hw8.pdf

Describe and analyze an algorithm to determine the number of shortest paths from a source vertex
s to a target vertex t in an arbitrary directed graph G with weighted edges. You may assume
that all edge weights are positive and that all necessary arithmetic operations can be performed
in O(1) time.(
Hint: Compute shortest path distances from s to every other vertex. Throw away all edges that

cannot be part of a shortest path from s to another vertex. What is left?
)

Solution:
We start by computing shortest-path distances dist(v) from s to v, for every vertex v, using
Dijkstra’s algorithm. Call an edge u → v tight if dist(u) + w(u → v) = dist(v). Every edge
in a shortest path from s to t must be tight. Conversely, every path from s to t that uses only
tight edges has total length dist(t) and is therefore a shortest path!
Let H be the subgraph of all tight edges in G. We can easily construct H in O(V + E) time.
Because all edge weights are positive, H is a directed acyclic graph. It remains only to count
the number of paths from s to t in H.
For any vertex v, let PathsToT(v) denote the number of paths in H from v to t; we need to
compute PathsToT(s). This function satisfies the following simple recurrence:

PathsToT(v) =


1 if v = t∑
v→w

PathsToT(w) otherwise

In particular, if v is a sink but v 6= t (and thus there are no paths from v to t), this recurrence
correctly gives us PathsToT(v) =

∑
∅ = 0.

We can memoize this function into the graph itself, storing each value PathsToT(v) at the
corresponding vertex v. Since each subproblem depends only on its successors in H, we can
compute PathsToT(v) for all vertices v by considering the vertices in reverse topological order,
or equivalently, by performing a depth-first search of H starting at s. The resulting algorithm
runs in O(V + E) time.
The overall running time of the algorithm is dominated by Dijkstra’s algorithm in the prepro-
cessing phase, which runs in O(E log V) time.

Rubric: 10 points = 5 points for reduction to counting paths in a dag + 5 points for the path-
counting algorithm (standard dynamic programming rubric)

8 After a grueling algorithms midterm, you decide to take the bus home. Since you planned ahead,
you have a schedule that lists the times and locations of every stop of every bus in Champaign-
Urbana. Champaign-Urbana is currently suffering from a plague of zombies, so even though the
bus stops have fences that supposedly keep the zombies out, you’d still like to spend as little time
waiting at bus stops as possible. Unfortunately, there isn’t a single bus that visits both your exam
building and your home; you must transfer between buses at least once.
Describe and analyze an algorithm to determine a sequence of bus rides from Siebel to your home,
that minimizes the total time you spend waiting at bus stops. You can assume that there are b
different bus lines, and each bus stops n times per day. Assume that the buses run exactly on

2

schedule, that you have an accurate watch, and that walking between bus stops is too dangerous
to even contemplate.

9 Kris is a professional rock climber (friends with Alex and the rest of the climbing crew from HW6)
who is competing in the U.S. climbing nationals. The competition requires Kris to use as many
holds on the climbing wall as possible, using only transitions that have been explicitly allowed by
the route-setter.
The climbing wall has n holds. Kris is given a list of m pairs (x, y) of holds, each indicating that
moving directly from hold x to hold y is allowed; however, moving directly from y to x is not
allowed unless the list also includes the pair (y, x). Kris needs to figure out a sequence of allowed
transitions that uses as many holds as possible, since each new hold increases his score by one
point. The rules allow Kris to choose the first and last hold in his climbing route. The rules also
allow him to use each hold as many times as he likes; however, only the first use of each hold
increases Kris’s score.

1. Define the natural graph representing the input. Describe and analyze an algorithm to solve
Kris’s climbing problem if you are guaranteed that the input graph is a dag.

2. Describe and analyze an algorithm to solve Kris’s climbing problem with no restrictions on
the input graph.

Both of your algorithms should output the maximum possible score that Kris can earn.

10 Many years later, in a land far, far away, after winning all the U.S. national competitions for 10
years in a row, Kris retired from competitive climbing and became a route setter for competitions.
However, as the years passed, the rules changed. Climbers are now required to climb along the
shortest sequence of legal moves from one specific node to another, where the distance between
two holds is specified by the route setter. In addition to the usual set of n holds and m valid
moves between them (as in the previous problem), climbers are now told their start hold s, their
finish hold t, and the distance from x to y for every allowed move (x, y).
Rather than make up this year’s new route completely from scratch, Kris decides to make one
small change to last year’s input. The previous route setter suggested a list of k new allowed
moves and their distances. Kris needs to to choose the single edge from this list of suggestions
that decreases the distance from s to t as much as possible.
Describe and analyze an algorithm to solve Kris’s problem. Your input consists of the following
information:

• A directed graph G = (V,E).
• Two vertices s, t ∈ V .
• A set of k new edges E ′, such that E ∩ E ′ = ∅
• A length `(e) ≥ 0 for every edge e ∈ E ∪ E ′.

Your algorithm should return the edge e ∈ E ′ whose addition to the graph yields the smallest
shortest0path distance from s to t.
For full credit, your algorithm should run in O(m log n+ k) time, but as always, a slower correct
algorithm is worth more than a faster incorrect algorithm.

3

11 (100 pts.) Flood it.
(This question was inspired by the game Open Flood [available as an app on android].)
You are given a directed graph G with n vertices and m edges (here m ≥ n). Every edge e ∈ E(G)
has a color c(e) associated with it1. The colors are taken from a set C = {1, . . . , ξ} (assume ξ ≤ n),
and every color c ∈ C, has price p(c) > 0.
Given a start vertex s0 = s, and a sequence of Π = 〈c1, . . . , c`〉 of colors, a compliant walk, at
the ith time, either stays where it is (i.e., si = si−1), or alternatively travels a sequence of edges of
color ci that starts at si. Formally, if there is a path σ ≡ (u1, u2), (u2, u3), . . . , (uτ−1, uτ) ∈ E(G),
such that c

(
(uj, uj+1)

)
= ci, for all j, and u1 = si, then one can set si+1 = uτ . The price of Π is

p(Π) =
∑`

i=1 p(ci).
Describe an algorithm, as fast as possible, that computes the cheapest sequence of colors for which
there is a compliant walk in G from a vertex s to a vertex t.
For full credit, your algorithm should run in O(m logm) time (be suspicious if you get faster
running time). Correct solutions providing polynomial running time would get 50% of the points.

12 (100 pts.) Flood it II.
We use the same framework as the previous question. Describe an algorithm, as fast as possible,
that given a vertex s, and vertices t1, . . . , tk, computes the cheapest sequence Π of colors for which
there are k walks W1, . . . ,Wk, such that Wi is compliant with Π, and it walks from s to ti, for
i = 1, . . . , k.
Do not use dynamic programming here [it doesn’t work]. Instead, think about the state of the
system after i colors of the sequence were used – where would the k walks in the graph be at this
point in time? Build the appropriate state graph, and solve the appropriate problem in this graph.
The running time of your algorithm should be polynomial if k is a constant. As usual, you might
want to start thinking about the case k = 2 first.
You should be able to solve this question fully even if your solution to the first question is sub-
optimal.

13 (100 pts.) Halloween!
It is Halloween, and Zaphod Beeblebrox is ready. He has a map (i.e., directed graph) of Shampoo-
Banana with the houses marked, with each house v marked with how much candy c(v) ≥ 0 one
gets if visiting this house. The map also connects houses u, v by a directed edge (u, v), if Zaphod
is willing to go directly from u to v. For reasons that are not well understood (maybe, Zaphod’s
brain-care specialist, Gag Halfrunt knows why), the fact that Zaphod is willing to go from u to v,
does not imply that he is willing to go from v to u (i.e., the graph is truly a directed graph).
Given the directed graph G, describe an algorithm as fast possible (and prove its correctness),
that computes the walk that starts from a vertex s, and collects as much candy as possible. The
algorithm should only output the amount of candy the optimal walk collects.
Note, that the walk is allowed to visit the same vertex several times, but you get candy only the
first time you visit it.

1This is a simple directed graph – no self loops or parallel edges. Every edge has only a single color associated with it.
(Unless explicitly stated otherwise, you can always assume a given directed graph is simple.)

4

Also, show how to modify the algorithm so that it outputs the optimal walk. What is the length
of this walk in the worst case?2

[Hint: What if the graph is strongly connected?]

14 (100 pts.) Rainbow walk
We are given a directed graph with n vertices and m edges (m ≥ n), where each edge e has a color
c(e) from {1, . . . , k}.

14.A. (20 pts.) Describe an algorithm, as fast as possible, to decide whether there exists a closed
walk that uses all k colors. (In a walk, vertices and edges may be repeated. In a closed walk,
we start and end at the same vertex.)

14.B. (80 pts.) Now, assume that there are only 3 colors, i.e., k = 3. Describe an algorithm, as
fast as possible, to decide whether there exists a walk that uses all 3 colors. (The start and
end vertex may be different.)

15 (100 pts.) Stay safe
We are given an undirected graph with n vertices and m edges (m ≥ n), where each edge e has a
positive real weight w(e), and each vertex is marked as either “safe” or “dangerous”.

15.A. (35 pts.) Given safe vertices s and t, describe an O(m)-time algorithm to find a path from
s to t that passes through the smallest number of dangerous vertices.

15.B. (65 pts.) Given safe vertices s and t and a value W , describe an algorithm, as fast as
possible, to find a path from s to t that passes through the smallest number of dangerous
vertices, subject to the constraint that the total weight of the path is at most W .

16 (100 pts.) Stay stable
We are given a directed graph with n vertices and m edges (m ≥ n), where each edge e has a
weight w(e) (you can assume that no two edges have the same weight). For a cycle C with edge
sequence e1e2 · · · e`e1, define the fluctuation of C to be

f(C) = |w(e1)− w(e2)|+ |w(e2)− w(e3)|+ · · ·+ |w(e`)− w(e1)|.

16.A. (10 pts.) Show that the cycle with the minimum fluctuation cannot have repeated vertices
or edges, i.e., it must be a simple cycle.

16.B. (90 pts.) Describe a polynomial-time algorithm, as fast as possible, to find the cycle with
the minimum fluctuation.

2There was extensive discussion on my neighborhood mailing list after Halloween with various statistics [how many
kids visited, what candies were consumed, etc] – people seems to be taking this stuff seriously.

5

