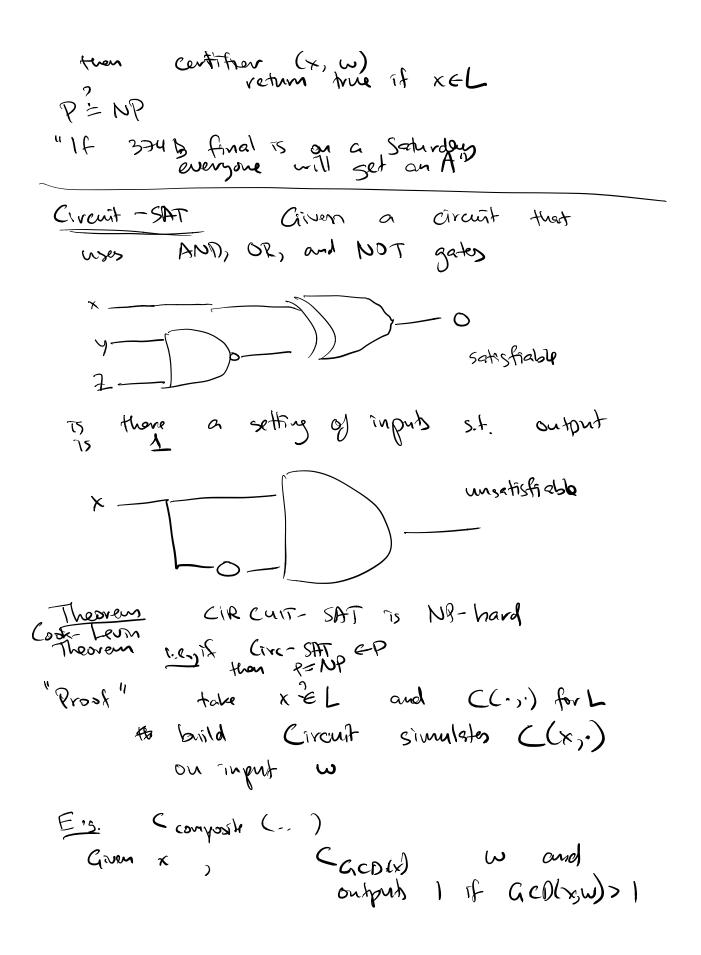
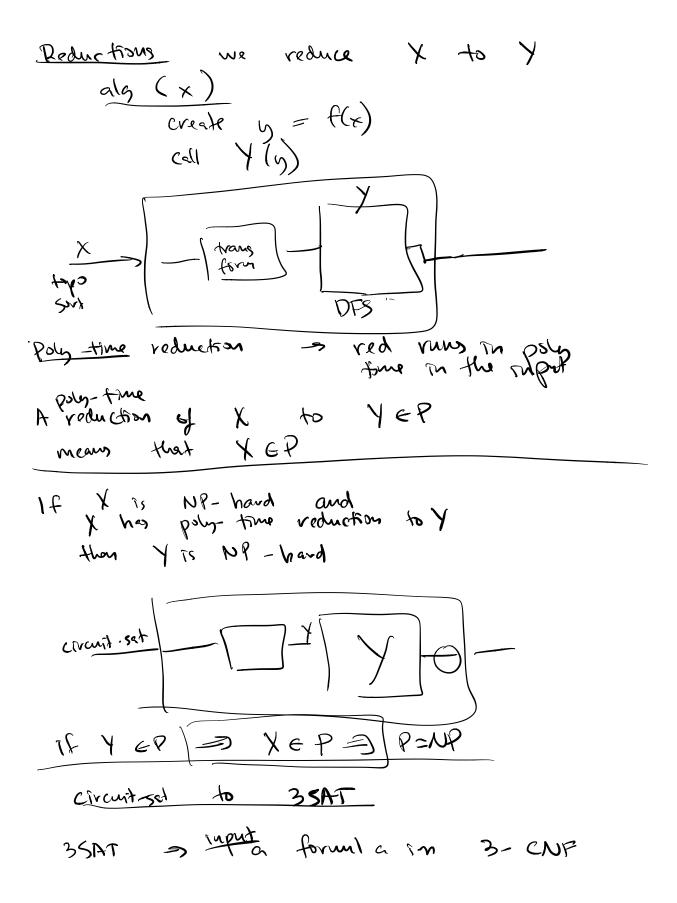
TODAY
NP-hardwess
circuit-Sht (cook-levin)
Reductions
SAT, 3SAT, MIS

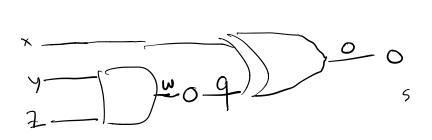
Product on
SAT, 3SAT, MIS

Productions
A DP is ognivelent to a language

$$L \subseteq \mathbb{Z}^*$$
 L= $\frac{1}{2} \times E D + f(x) = T \frac{1}{2}$
A longuage L is in P if there is an algorithm
that recognizes L in time $O(x)$ for some c
(so RL, CFL are all in P)
A contribut for a language L is an algorithm
 $C(x,w)$ that returns T/F such that
if $x \in L$ then $\frac{1}{3}$ some w with $C(x,w) = T$
if $x \notin L$ then $\frac{1}{3}$ some w with $C(x,w) = T$
if $x \notin L$ then for all w $C(x,w) = F$
An efficient ortific runs in time $O(|x|^{c})$ for some c
A language is in NP if it has an efficient
A language is in NP if it has an efficient
A language is NP-hard if $L \in P \implies P = NP$
L composite = $\frac{1}{4} \times 1 \times is a composite number
Composite (x, w)
verturn true if $gw(x, w) > 1$
L composite $\in NP$, L mis $\in NP$, L sp $\in NP$
 L composite $\in NP$, L mis $\in NP$, L sp $\in NP$$







1 add variable for each wive
2. add clause for each gate
AND gat
$$W = y \wedge Z$$

 $(W \wedge y \wedge z) \wedge (y \vee z) \wedge (y \vee z)$
 $OF get O = Q \vee X$
 $(O \vee Q \vee X) \wedge (O \vee X) \wedge (O \vee Q)$
 $NOT gete Q = TW$
 $(Q \vee w) \wedge (Q \vee w)$
3. add output claux (o)
 $Q \wedge (Q \vee w) \wedge (Q \wedge w) \wedge (Q \wedge w) \wedge (Q \wedge w)$
 $(w \wedge y \wedge z) \wedge ...$
4. transform \overline{P} , into $3 (NF \overline{P}_{2})$

$$(q \cup w) \rightarrow (q \cup w \cup x_{i}) \wedge (q \cup w \cup x_{i})$$

$$(a) \rightarrow (a \cup x_{i} \cup x_{i}) \wedge (a \cup x_{i} \cup x_{i})$$

$$h (a \cup x_{i} \cup x_{i}) \wedge (a \cup x_{i} \cup x_{i})$$

$$(a \cup x_{i} \cup x_{i}) \wedge (a \cup x_{i} \cup x_{i})$$

$$(a \cup x_{i} \cup x_{i}) \wedge (a \cup x_{i} \cup x_{i})$$

$$(a \cup x_{i} \cup x_{i}) \wedge (a \cup x_{i})$$

$$(a \cup x_{i} \cup x_{i}) \wedge (a \cup x_{i})$$

$$(a \cup x_{i} \cup x_{i}) \wedge (a \cup x_{i})$$

$$(a \cup x_{i} \cup x_{i}) \wedge (a \cup x_{i})$$

$$(a \cup x_{i} \cup x_{i}) \wedge (a \cup x_{i})$$

$$(a \cup x_{i} \cup x_{i}) \wedge (a \cup x_{i})$$

$$(a \cup x_{i} \cup x_{i}) \wedge (a \cup x_{i})$$

$$(a \cup x_{i} \cup x_{i}) \wedge (a \cup x_{i})$$