TODAY

$$
\begin{aligned}
& \text { NP - hardness } \\
& \text { circuit-SAT (Cook-Levin) } \\
& \text { Reductions } \\
& \text { SAT, 3 SAT, MIS }
\end{aligned}
$$

Recall
A decision problem is a function $f: D \rightarrow\{T / F\}$
$A D P$ is equivalent to a language

$$
L \subset \varepsilon^{*} L=\{x \in D\{f(x)=T\}
$$

A language L is in P if there is an algorithm that recognizes L in time $O\left(n^{c}\right)$ for gone C (so RL, CFL are al in P)

A certifier for a language L is an algorithm $C(x, w)$ that returns T / f such that if $x \in L$ then \exists some w with $C(x, w)=T$ if $x \notin L$ then for all w $C(x, w)=F$
An efficient cortifiar runs in time $O\left(|x|^{c}\right.$) for some c A language is in NP if it hos an efficient
certifier
A languegeLis NP -hard if $L \in P \Rightarrow P=N P$
$L_{\text {composite }}=\{\times 1 \times$ is a composite number $\}$
$C_{\text {composite }}(X, W)$
return true if $\operatorname{scd}(x, \omega)>1$
$\begin{array}{ll}L_{\text {composite }} \in N P, & L_{\text {mss }} \in N P, L_{S P} \in N D \\ & L_{\text {Subsum }} \in N P\end{array}$
then certifier (x, ω)

$$
P \stackrel{?}{=} N P
$$

"If 374 final is on a saturday
everyone will get an A"
Circuit-SAT Given a circuit that uses AND, OR, and NDT gates

is there a setting of inputs st. output

Theorem CIRCUIT- SAT is NQ-hard Theorem le, if Circ-SAT $P \in P$
"Proof" take $x^{7} \in L$ and $C(\cdot, \cdot)$ for L * build Circuit simulates $C(x, \cdot)$ on input ω

En. $C_{\text {composite }}(\ldots)$

$$
\begin{aligned}
& G i v e n \\
& C_{G C D}(x) \\
& \text { outputs } 1 \text { if } G(D)(x, w)>1
\end{aligned}
$$

Reductions we reduce x to Y $\operatorname{alg}(x)$

$$
\begin{aligned}
& \text { create } y=f(x) \\
& \text { call } y(y)
\end{aligned}
$$

Poly_time reduction \rightarrow red runs in poly
poly-fime
A reduction of x to $Y \in P$ means that $X \in P$

If X is NP-hard and X has poly-time reduction to Y then Y is NP - hand

if $Y \in P \Rightarrow P \in P \Rightarrow P=N P$
circuit set to 3 SAT
SAT $\Rightarrow \frac{\text { input }}{a}$ formula in 3-CNF
(Conjunctive Normal Form)

$$
(x \vee y \vee z) \wedge(\bar{x} \vee \bar{y} \vee w) \wedge
$$

output is the formula satisfiable

$$
x=T \quad y=F, w=T, z=F
$$

Claimer 3-CNF is Nि-hard
Prose reduce Circuit-SAT to 3-CNF

1 add variable for each wive
2. add clauses for each gate

$$
\begin{aligned}
& \text { AND gat } \\
& \left(\begin{array}{l}
\omega \wedge \\
(\omega \bar{y} \wedge \bar{z}) \wedge(\bar{y} \vee z) \wedge(y \vee \bar{z}) \\
\text { OR gate } \\
\text { O } \\
\left(\frac{0}{0} \vee q \vee x\right) \wedge(0 \vee \bar{x}) \wedge(0 \vee \bar{g}) \\
\text { NOT gate }
\end{array}\right)
\end{aligned}
$$

$$
\left(\begin{array}{cc}
g & \vee \tag{0}
\end{array}\right) \therefore\left(\frac{9}{9} \vee w\right)
$$

3. add output claus
Φ_{1} is a cove formula.
$0 \wedge(q \vee \omega) \wedge(\bar{g} \wedge \bar{\omega}) \wedge$
$(\omega \wedge \bar{y} \wedge \hat{z}) \wedge \ldots$
4. transtam Φ_{1} into $3 C N F \quad \Phi_{2}$
$(q \vee u) \rightarrow\left(q \cup \omega \cup x_{1}\right) \wedge\left(q \vee \omega \cup \bar{x}_{1}\right)$
$(0) \rightarrow\left(0 \vee x_{1} \vee x_{2}\right) \wedge\left(0 \vee x_{1} \vee x_{2}\right)$

$$
\wedge\left(0 \vee \bar{x}_{1} \cup x_{2}\right) \wedge\left(0 \vee \bar{x}_{1} \cup \bar{x}_{2}\right)
$$

5. call 3-SAT on Φ_{2}

$$
\begin{aligned}
& \text { MIS DNP-hard } \\
& 3-C N F \text { formiG } \\
& \quad(\text { avbuc }) \wedge(b \cup \bar{c} \vee d) \wedge(\bar{a} v e \cup d)
\end{aligned}
$$

$3-\mathrm{CNF} \rightarrow \mathrm{MIS}$

