TODAY Greedy algorithing

$$
\begin{aligned}
& \text { - jon shod } \\
& \text { - clas)ssched } \\
& \text { - calesnegley } \\
& \text { - change taking }
\end{aligned}
$$

Restaurant

$$
\begin{array}{ll}
0, \ldots, \ldots \text { On orders } \\
\ell(1) \ldots & \ell(n) \rightarrow \text { how long }
\end{array}
$$ each order takes

to cook
tip \rightarrow suritrack waring for sacs minimize the $\frac{\text { total }}{7}$ waiting time lengthen 1

Shortest Sob First while jobs left
schedule shorted job

Suppose greed n schedule g^{\prime}, in $l\left(g_{i}\right) \leq l\left(g_{i+1}\right)$
Optimal schedule

$$
0_{1},
$$

, on $O_{n} \quad O_{k+1}$
$\operatorname{swap} \quad \begin{aligned} & O_{k} \\ & O_{k}=O k+1\end{aligned} O_{k+1}^{\prime} \quad O_{k+1}=O_{k}$ such that $g\left(o_{k}\right)>$

$$
\begin{aligned}
& O_{k}^{\prime}=O_{k+1} \quad O_{k+1}^{\prime}=O_{k} \\
& w\left(O_{k}^{\prime}\right)=w\left(O_{k+1}\right)-\ell\left(O_{k}\right) \quad \sum w\left(O_{k}^{\prime}\right)=\sum_{\left(\omega\left(O_{k+1}\right)\right.}^{\left(O_{k+1}\right)=w\left(O_{k}\right)+\ell\left(O_{k+1)}\right.} \begin{array}{ll}
w\left(O_{k+1}^{\prime}\right) \text { smdlav } \\
& -\ell\left(O_{k}^{\prime}\right) b_{i s s e v}
\end{array}
\end{aligned}
$$

$$
\begin{array}{ll}
g\left(o_{k+1}\right)<g\left(o_{k}\right) & \leq \sum w\left(o_{k}\right) \\
l\left(o_{k+1}\right) \leq l\left(o_{k}\right) &
\end{array}
$$

we can produce optimal schoderle in greedy order

person 1	tip	$-1 \$ /$	min wait	1
2	$-5 \$$	$/ \mathrm{min}$	7	$7 / 5$
2	$-2 \$$	$/ \mathrm{min}$	3	312
3	$-6 \$$	$/ \min$	55	$55 / 6$

order by $\ell(i) /$ tip (i)
Shortest sob First
while jobs left schedule shorted job

result! $=($ en $($ gobs $)>0$

\rightarrow whit art not g. mots \rightarrow extract Min ($\left.\mathrm{aq} \mathrm{q}^{2}\right) \log$
jobs reulbue (i) o \quad o(n)?
N3 return sorted (jobs) $O(n \log n)$

${ }_{F}^{S}\left[\begin{array}{lll}1 & \ldots & n \\ 1 & \ldots & n\end{array}\right]$
starting time of movie in,
finishing the

$$
\begin{aligned}
& x_{1}, \ldots, x_{n} \\
& F[i] \geq S[i] \quad \text { (always) }
\end{aligned}
$$

Let f_{1} finisios first

$$
\begin{array}{ll}
0_{1}, \ldots, o_{k} & S(0) \geq F\left(0_{1}\right) \\
F_{1}, o_{2}, \ldots, o_{k} & \\
S\left(0_{2}\right) \geq F(f)
\end{array}
$$

OL, ,.., o k
f_{2} finishest first, starts after

Common pattern
\rightarrow at each step use "greedy hewto select next element \rightarrow exchange argument \rightarrow

A: $a c b c$
B: $\quad c$ a $\& b$
ci. $a \quad c d b$

Di, ad bc
$a: C B D A$
b: $C \quad D A B$
$C: D \quad B A C$
di A BC D
Matching: each co es one student

Unstable: Student co ${ }^{x} X^{\text {is }}$ matched straw. co co $x_{\text {matched }}^{1 i s} y$

$$
\begin{gathered}
\text { student } x \\
\text { co } y \text { prefers } y \text { to } x \\
\text { prefers } x \text { to } y \\
\text { unstable }
\end{gathered}
$$

if student
stable assignment \rightarrow not unstable
For amy int op profs
7 a stable matching and can be found in $O\left(n^{2}\right)$
Each round

1. Find an unmatched company
2. Offer to bert student on that yer pons offered
3. Student accept if unmatched also accept if matched to worse (reject old co).
rejeet if matchad to bitter co.
