TODAY
- Finish shortest paths
- Dijkstra analysis
- Bidirectional Dijkstra
- Bellman-Ford
- Shortest greedy algorithms
- Shortest job first
- Class scheduling
- Gale-Shapley

Dijkstra (generic version)
Initialize $D[u] = \infty$ for all u
$D[S] = 0$. Mark all nodes unfinished

(a) While there are unfinished nodes $O(v)$
Let $v = \text{ unfinished node } w / \min \text{ dist } (D[v])$
For edges $v \rightarrow y$
If $D[u] > D[v] + c(v \rightarrow u)$: tense edge
$D[u] = D[v] + c(v \rightarrow u)$
mark v as finished

$O(E + V^2) = O(V^2)$

Let u_i be vertex extracted at i-th iteration
d_i be its distance at that time.

Lemma $d_i \leq d_j$ for $i < j$

Proof $d_i \leq d_{i+1}$ for all i
At i-th iteration $d(u_{i+1}) \geq d(u_i)$
relax edges from u_i
$d(u_{i+1}) = d(u_i) + c(u_{i+1})$

Lemma 2 No weight of finished nodes is
ever changed (no new edges)
Proof. If \(u_i \) is unprocessed, \(d_i \geq d(u_i) \) in a later iteration, \(j = 1 \) and \(d(u_i) \geq d_i \); any edge \(u_j \rightarrow u_i \) cannot be tense.

\[d(u_{j+1}) = u_i; \]
\[d(u_{j+1}) + l(j+1) \geq u_i; \]

\(d_i \) is the final distance of node \(u_i \) not processed (marked finished) in order by final distance.

Lemma 3. For any path \(s = v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow \ldots \rightarrow v_n \) with final \(d(v_n) \),

\[\text{final } d(v_n) \leq \ell(\text{path}) = \ell(s \rightarrow v_1) + \ell(v_1 \rightarrow v_2) + \ldots \]

Proof by induction. Assume true for paths shorter than \(n \).

\[d(v_{n-1}) \leq \ell(\text{path } s \ldots v_{n-1}) \]

when \(v_{n-1} \) was extracted, \(d(v_n) \leq d(v_{n-1}) + \ell(v_{n-1} \rightarrow v_n) \)

\[d(v_n) \leq \ell(\text{path } s \ldots v_{n-1}) + \ell(v_{n-1} \rightarrow v_n) \]

is shortest path \(s \rightarrow v \) is \(\geq d(v) \)

\[\leq d(v) \]

Dijkstra computes shortest paths

Priority Queue

- \(\text{dist graph node} \)

 - Insert (key, value)
 - Extract Min () \(\Rightarrow \text{min key, value} \)
 - Decrease Key (new key, value) \(\Rightarrow \text{adjust the dist of a node} \)

Dijkstra (with PQ)

- \(\text{init } D[s] = \infty, D[S] = 0 \)
- Insert \((Q, (0, s)) \)
- while \(Q \) not empty:

\[\]
\[V \cdot \log V \]

\[v = \text{Extract Min}(Q) \quad O(\log V) \]

\[\text{if } v = t \text{ stop} \]

\[\text{for edges } v \rightarrow u \]

\[\text{if } D[v] \geq D[u] + E(v \rightarrow u) \]

\[D[u] = D[v] + E(v \rightarrow u) \]

\[\text{if } u \notin Q \text{ Decrease key } (D[u], u) \]

\[\text{else Insert } (D[u], u) \]

\[E \cdot \log V \]

\[E \cdot \log V \]

binary heap \rightarrow EM, DK, I \quad O(C \log V) \]

\[O((E+V) \log V) \]

fibonacci heap \rightarrow I, DK is amortized \(O(1) \)

EM is \(O(C \log N) \)

\[O(E + V \log V) \]

fastest SSSP on weighted graphs with \(n \) edges

Dijkstra gives us shortest path from any node to all nodes

shortest path from \(s \) to \(t \)

Bidirectional Dijkstra
all nodes at distance \(d \) from \(s \) and \(t \\
\) stop after \(d = \ell(s \rightarrow t) / 2 \)

store \(D(s) = \infty \), \(D(s,t) = 0 \) for dist from

\(D(s) = \infty \), \(D(s,t) = 0 \) btw dist from

\(v \)

\(\in \)

\(\in \)

\(\in \)

while

Extract Min (both backwards or forward node)

if both forward - b/w has been extracted

for \(u \) then \(SP(u \rightarrow t) = D(s,t) + D(u) \)

\(A^* \) same as dijkstra - heuristic function

\(\min \ D(s,v) + h(v) \)

\(h(v) \leq \ell(v \rightarrow t) \) - condition

Bellman - Ford

while there are tense edges

relax tense edge

\(Init \ D(s) = \infty \), \(D(s,t) = 0 \)
Flag = true
while Flag =<
 Flag = False
 for each edge u→v if tense
 relax (u→v) (update D(u))
 Flag = True =<

Lemma after i iterations in B-F
D(u) = length of shortest path from s to v
with ≤ i hops

Proof assume true for i-1
so s→u in i hops ≤
s→u→v in i-1 hops =

after i-1 iterations D(u) is ≤
after i iterations D(u) is ≤ + e(u→v)

All paths are at most V-1 hops
After V-1 iterations D(u) is shortest path
s→v

Bellman-Ford

Init D(s) = ∞, D(s) = 0
for i = 1 to V-1
for each edge u→v
if tense
 relax (u→v) (update D(u))
O(VE) slower than O(E+VlogV)
B-F works on all graphs - weighted edges
-2 -5 -8
Graph that contains a negative weight cycle
least cost path
\[a \to b \to c \to e \]
\[D(c) + e(c \to b) \leq D(b) \]
least cost walk
\[a \to b \to c \to d \to b \to c \to e = 0 \]
\[3 -5 1 1 -5 5 \]
\[a \to b \to c \to d \to b \to c \to e = -3 \]
there is no least cost walk
B-F explores walks, not paths
if no -ve cycle \(\Rightarrow \) shortest path = shortest walk
Bellman-Ford

Init \(D(v) = \infty \), \(D(s) = 0 \)
for \(i = 1 \) to \(U-1 \)
for each edge \(u \to v \)
if tense
relax \((u \to v) \) (update \(D(v) \))

// check for -ve cycle
for each edge \((u \to v) \)
if tense
return "negative cycle"

Shortest path algo
1. Unweighted graph
2. Weighted DAG
3. No -ve edges
4. Other mix

\[\text{Dist} \{s, 0\} = 0 \]
\[\text{Dist} \{v, i\} = \min_{u \rightarrow v} \text{Dist} \{u, i-1\} + e(u \rightarrow v) \]

true if all graphs no order of evaluation?

\[\text{Dist} \{v, i\} = \text{shortest path after} \leq i \text{ hops} \]

\[\text{Dist} \{s, i\} = 0 \]
\[\text{Dist} \{v, 0\} = \infty \text{ for } v \neq s \]
\[\text{Dist} \{v, i\} = \min_{u \rightarrow v} \left\{ \text{Dist} \{u, i-1\} + e(u \rightarrow v) \right\} \]

\[\text{Dist} \{s, |V| - 1\} = \text{shortest path distance} \]

DP formulation \rightarrow Bellman-Ford algorithm