TODAY

- SCC decomposition
- shortest paths

$$
\begin{aligned}
& \text { shortest, Baths, Dijkstra } \\
& \text { - BFS, BAG, Dike } \\
& \text { Bellman Ford }
\end{aligned}
$$

$\operatorname{SCC}(v)=\operatorname{reach}(v) \cap \operatorname{readh}^{-1}(v)$
Given v can find $\operatorname{sCC}(v)^{\text {DIS }}$ in $O(v+E)$ for all $v \in V$

$$
D F S(v)
$$

DPS ${ }_{\text {compute }}$ intersection on reverse graph
(1) Every SCC has ex acth one node DFW (parent
(2) DFP from any node in sink component returns
(3) Last vertex in post order G is in source component
(35) Last vertex in post-order sink $\operatorname{rev}(C)$ is in the sink component

- do post order of rev (G)
- DFS on node w/ highest post-order
- repeat for any unvisited nodes OFS

Figure 6.16. The Kosaraju-Sharir strong components algorithm

Shortest paths

- Given find source shortest s target frat from stout
- Given sourest path from stor so t
- Given single a source targets shortest path (SSSP)
shortest source th all find targets length of

Shortest path Free rooted at source worth preen path to any t is shortest

$$
S P(s, u) \leqslant \operatorname{SP}(s, v)+\ell(v, u)
$$

$\operatorname{DIST}[u] \rightarrow$ tentative $S P$ laugh from s to u
$\operatorname{DIST}[s]=0$
$\operatorname{Dist}[u]=\infty$ for all $u \neq s$
tense edge (v, u)

If edges are unweighted

$$
B F S
$$

BFS(s):
InitSSSP(s)
Push (s)
while the queue is not empty
$u \leftarrow \operatorname{Pull}()$
for all edges $u \rightarrow v$
if $\operatorname{dist}(v)>\operatorname{dist}(u)+1$
$\operatorname{dist}(v) \leftarrow \operatorname{dist}(u)+1$
$\operatorname{pred}(v) \leftarrow u$
Push (v)

SSSP on DAG s

$$
S P(s, u) \leqslant S P(s, v)+\ell(v, u)
$$

$$
\begin{aligned}
& \operatorname{SP}(s, u)=\min _{v \rightarrow u} S P(s, v)+l(v, u) \\
& S P(s, c)=0
\end{aligned}
$$

$$
S P(s, s)=0 \quad S P(S, t)=\infty \text {. fir all } t \neq S
$$

For u in tops order of A

$$
\operatorname{SP}(3, u)=\operatorname{mim}_{v \rightarrow 4}(S P(s, v)+l(v, u)
$$

$O(v+E)$

$$
\text { parent } \neq \underset{v}{\substack{\text { margin }}} S P(S, v)+l(v, u)
$$

Dijkstra

Finished nodes \rightarrow have exact SP length Unfinished nodes \rightarrow don't
Relax edges from nodinsshed to unfinished Closest unfinished node can be marked
Dijkstra
mark all nodes \quad mist $[S]=0$ finished
DIST $[u]=\infty<O(v)$ while there ave unfinished nodes $O(V)$

$$
\begin{aligned}
& \text { - relax all edges from V } \\
& \text { Ex relax }
\end{aligned}
$$

$$
O\left(V^{2}\right) \quad O\left(V^{2}+E\right) \quad \text { Eis } O\left(v^{2}\right)
$$

