To DSC decomposition
shortest paths
 BFS, DAG, Dijkstra
Bellman-Ford

\[\text{SCC}(v) = \text{reach}(v) \cap \text{reach}^{-1}(v) \]

Given \(v \), can find \(\text{SCC}(v) \) in \(O(V+E) \) time
for all \(v \in V \)
\[\text{DFS}(v) \]
\[\text{DFS}^{-1}(v) \]
Compute intersection

0. Every SCC has exactly one node \(w \) with parent not in same SCC in a DFS tree
1. DFS from any node in sink component returns all nodes in that SCC and no others
2. Last vertex in post-order of \(G \) is in source component
3. Last vertex in post-order of \(\text{rev}(G) \) is in the sink component

- do post order of \(\text{rev}(G) \)
- DFS on node \(w \) with highest post-order
- repeat for any unvisited nodes, taking highest node as DFS
KosarajuSharir(G):

\[S \leftarrow \text{new empty stack} \]

for all vertices \(v \)

unmark \(v \)

\[v.root \leftarrow \text{NONE} \]

\{(Phase 1: Push in postorder in rev(G))\}

for all vertices \(v \)

if \(v \) is unmarked

\[\text{PUSHPostRevDFS}(v, S) \]

\{(Phase 2: DFS again in stack order)\}

while \(S \) is non-empty

\[v \leftarrow \text{POP}(S) \]

if \(v.root \) = \text{NONE}

\[\text{LABELONEDFS}(v, r) \]

PUSHPostRevDFS(v, S):

mark \(v \)

for each edge \(u \rightarrow v \) \text{ (Reversed!)}

if \(u \) is unmarked

\[\text{PUSHPostRevDFS}(u, S) \]

PUSH(v, S)

LABELONEDFS(v, r):

\[v.root \leftarrow r \]

for each edge \(v \rightarrow w \)

if \(w.root \) = \text{NONE}

\[\text{LABELONEDFS}(w, r) \]

Figure 6.16. The Kosaraju-Sharir strong components algorithm
Shortest paths
- Given source find shortest path from s to t
- Given source and targets find shortest path to all targets t
- Given source s, find shortest path to all targets t (SSSP)

Shortest path tree rooted at source s

$$\text{SP}(s, u) \leq \text{SP}(s, v) + \ell(v, u)$$

$$\text{DIST}[u] \rightarrow \text{tentative SP length from } s \text{ to } u$$

$$\text{DIST}[s] = 0$$

$$\text{DIST}[u] = \infty \text{ for all } u \neq s$$

Relax edge (v, u)

$$\text{DIST}[u] \geq \text{DIST}[v] + \ell(v, u)$$

BFS if edges are unweighted
BFS(s):
- InitSSSP(s)
- Push(s)

 while the queue is not empty

 \[u \leftarrow \text{Pull()} \]
 for all edges \(u \rightarrow v \)

 \[\begin{align*}
 & \text{if } \text{dist}(v) > \text{dist}(u) + 1 \\
 & \quad \langle\text{if } u \rightarrow v \text{ is tense}\rangle \\
 & \quad \text{dist}(v) \leftarrow \text{dist}(u) + 1 \\
 & \quad \langle\text{relax } u \rightarrow v\rangle \\
 & \quad \text{pred}(v) \leftarrow u \\
 & \quad \text{Push}(v)
 \end{align*}\]

InitSSSP(s):
- dist(s) \(\leftarrow 0 \)
- pred(s) \(\leftarrow \text{NULL} \)

 for all vertices \(v \neq s \)

 \[\begin{align*}
 & \text{dist}(v) \leftarrow \infty \\
 & \text{pred}(v) \leftarrow \text{NULL}
 \end{align*}\]

SSSP on DAGs

\[\text{SP}(s, u) \leq \text{SP}(s, v) + \ell(v, u) \]

\[\text{SP}(s, u) = \min_{v \rightarrow u} \text{SP}(s, v) + \ell(v, u) \]

\[\text{SP}(s, s) = 0 \]

\[\text{SP}(s, s) = \infty \text{ for all } t \neq s \]
For \(u \in G \), topo order of \(G \):

\[
SP(s, u) = \min_{v \in S} (SP(s, v) + E(u, v))
\]

\(O(u + E) \)

\(s \rightarrow a \)

\(Dijkstra \)

Finished nodes -> have exact SP length

Unfinished nodes -> don’t """

Relax edges from finished to unfinished

Closest unfinished node can be marked finished

\(Dijkstra \) mark all nodes \(\{ s \} \) unfinished

while there are unfinished nodes:

- take smallest unfinished node \(v \) \(\{ Dist \} \)

 - mark as finished

 - relax all edges from \(v \) Ex relax
\(O(n^2) \quad O(n^2 + E) \quad \text{Eis } O(n^2) \)