Part II

Course Goals and Overview

High-Level Questions

(1) Computation, formally.
(1) Is there a formal definition of a computer?
(2) Is there a "universal" computer?
(2) Algorithms
(1) What is an algorithm?
(2) What is an efficient algorithm?
(3) Some fundamental algorithms for basic problems
(- Broadly applicable techniques in algorithm design
(3) Limits of computation.
(1) Are there tasks that our computers cannot do?
(2) How do we prove lower bounds?
(3) Some canonical hard problems.

Course Structure

Course divided into three parts:
(1) Basic automata theory: finite state machines, regular languages, hint of context free languages/grammars, Turing Machines
(2) Algorithms and algorithm design techniques

- Undecidability and NP-Completeness, reductions to prove intractability of problems

Goals

- Algorithmic thinking

(2) Learn/remember some basic tricks, algorithms, problems, ideas
(3) Understand/appreciate limits of computation (intractability)
(4) Appreciate the importance of algorithms in computer science and beyond (engineering, mathematics, natural sciences, social sciences, ...)

History

History

Muhammad ibn Musa al-Khwarizmi (c.780-c.850)

Text on Algebra

$$
\begin{aligned}
& \text { 家 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 居 } \\
& \text { رإل تـعغ وطذد مورته }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 演 " } \\
& \text { و } \overline{\text { ग }}
\end{aligned}
$$

$$
\begin{aligned}
& \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { يa } \\
& \text { 范 }
\end{aligned}
$$

the first quadrate，which is the ofuare，amd the tiwo quadrangles on its sidss，which are the cen rooss，maks together thirty－nine．In order to complete the great qualrate，there wants ondy a square of five maltiplisd ly five，or twenty－five．This we acd to thirty－nine，in orilre to complete the great equare $S H$ ．The aum is sixey－four．We extract its nost，eight，which is one of the sidpsof the great quadrangle By subcracting from this the same quantity which we lave before alded， namely fite，we obtain three the remainder．Thia is the side of the guadrungle A B ，which represente thu square；it is the coot of this square，and the square itself is nine．This is the tigure：－

Demanditration of the Case：＂a Sipuare and tornty－one Dirhess are equat to tese Roots．＂＊
We ropresent the square by a quadiate A D，the lengigh of whose site we do not know．To chis we joina paralfelogram，the breadth of which is equal to one of the sides of the quadeate $A \mathrm{D}$ ，such as the side K N ． This paralellogrant is H B．The length of the two

Algorithm Description

If some one says: "You divide ten into two parts: multiply the one by itself; it will be equal to the other taken eighty-one times." Computation: You say, ten less a thing, multiplied by itself, is a hundred plus a square less twenty things, and this is equal to eighty-one things. Separate the twenty things from a hundred and a square, and add them to eighty-one. It will then be a hundred plus a square, which is equal to a hundred and one roots.

Algorithm Description

If some one says: "You divide ten into two parts: multiply the one by itself; it will be equal to the other taken eighty-one times." Computation: You say, ten less a thing, multiplied by itself, is a hundred plus a square less twenty things, and this is equal to eighty-one things. Separate the twenty things from a hundred and a square, and add them to eighty-one. It will then be a hundred plus a square, which is equal to a hundred and one roots.

$$
\begin{array}{r}
(10-x)^{2}=81 x \\
x^{2}-20 x+100=81 x \\
x^{2}+100=101 x
\end{array}
$$

Models of Computation vs Computers

(1) Model of Computation: an "idealized mathematical construct" that describes the primitive instructions and other details
(2) Computer: an actual "physical device" that implements a very specific model of computation

First Computer

Babbage's analytical engine-designed in 1837, never built.

First Program

Ada Lovelace's "Note G" describing how to calculate Bernouilli numbers using the analytical engine.

First Bug!

Ada Lovelace's "Note G" describing how to calculate Bernouilli numbers using the analytical engine.
This version contains a bug!

Models of Computation vs. Computers

Models and devices:
(1) Algorithms: usually at a high level in a model
(2) Device construction: usually at a low level
(3) Intermediaries: compilers
(9) How precise? Depends on the problem!
(5) Physics helps implement a model of computer
(6) Physics also inspires models of computation

Adding Numbers

Problem Given two \boldsymbol{n}-digit numbers \boldsymbol{x} and \boldsymbol{y}, compute their sum.

Basic addition

$$
\begin{array}{r}
3141 \\
+7798 \\
\hline 10939
\end{array}
$$

Adding Numbers

$$
\begin{aligned}
& c=0 \\
& \text { for } \begin{array}{l}
i=1
\end{array} \text { to } n \text { do } \\
& \quad z=x_{i}+y_{i} \\
& z=z+c \\
& \quad \text { If }(z>10) \\
& \quad c=1 \\
& \quad z=z-10 \quad \text { (equivalently the last digit of } z) \\
& \quad \text { Else } c=0 \\
& \text { print } z \\
& \text { End For } \\
& \text { If }(c==1) \text { print } c
\end{aligned}
$$

Adding Numbers

```
\(c=0\)
for \(i=1\) to \(n\) do
    \(z=x_{i}+y_{i}\)
    \(z=z+c\)
    If ( \(z>10\) )
        \(c=1\)
        \(z=z-10\) (equivalently the last digit of \(z\) )
    Else \(\boldsymbol{c}=0\)
    print z
End For
If ( \(c==1\) ) print \(c\)
```

(1) Primitive instruction is addition of two digits
(2) Algorithm requires $O(n)$ primitive instructions

Multiplying Numbers

Problem Given two \boldsymbol{n}-digit numbers \boldsymbol{x} and \boldsymbol{y}, compute their product.

Grade School Multiplication

Compute "partial product" by multiplying each digit of y with x and adding the partial products.

$$
\begin{array}{r}
3141 \\
\times 2718 \\
\hline 25128 \\
3141 \\
21987 \\
6282 \\
\hline 8537238
\end{array}
$$

Time analysis of grade school multiplication

(1) Each partial product: $\boldsymbol{\Theta}(\boldsymbol{n})$ time
(2) Number of partial products: $\leq n$

- Adding partial products: \boldsymbol{n} additions each $\boldsymbol{\Theta}(\boldsymbol{n})$ (Why?)
- Total time: $\boldsymbol{\Theta}\left(n^{2}\right)$
© Is there a faster way?

Fast Multiplication

Best known algorithm: $\boldsymbol{O}\left(\boldsymbol{n} \log \boldsymbol{n} \cdot 4^{\log ^{*} \boldsymbol{n}}\right)$ by Harvey and van der Hoeven, published in 2018!
Conjecture: there exists an $O(n \log n)$ time algorithm

Fast Multiplication

Best known algorithm: $\boldsymbol{O}\left(\boldsymbol{n} \log \boldsymbol{n} \cdot \mathbf{4}^{\log ^{*} \boldsymbol{n}}\right)$ by Harvey and van der Hoeven, published in 2018!
Conjecture: there exists an $O(n \log n)$ time algorithm
We don't fully understand multiplication!
Computation and algorithm design is non-trivial!

Aside about O-notation

Some previous versions of multiplication are still widely used:

- Karatsuba algorithm $O\left(n^{\log _{2} 3}\right)$ [1962]
- Schönhage-Strassen (FFT) $O(n \log n \log \log n)$ [1971]

Why?

Aside about O-notation

Some previous versions of multiplication are still widely used:

- Karatsuba algorithm $O\left(n^{\log _{2} 3}\right)$ [1962]
- Schönhage-Strassen (FFT) $O(n \log n \log \log n)$ [1971]

Why? Fürer's algorithm (2007) $O\left(n 2^{O\left(\log ^{*} n\right)}\right)$

Aside about O-notation

Some previous versions of multiplication are still widely used:

- Karatsuba algorithm $O\left(n^{\log _{2} 3}\right)$ [1962]
- Schönhage-Strassen (FFT) $O(n \log n \log \log n)$ [1971]

Why? Fürer's algorithm (2007) $O\left(n 2^{O\left(\log ^{*} n\right)}\right)$
\ldots. beats Schönhage-Strassen for numbers greater than $\mathbf{2}^{2^{64}}$.

