Part II

Course Goals and Overview

High-Level Questions

- Computation, formally.
 - Is there a formal definition of a computer?
 - Is there a "universal" computer?
- Algorithms
 - What is an algorithm?
 - What is an efficient algorithm?
 - Some fundamental algorithms for basic problems
 - Broadly applicable techniques in algorithm design
- Limits of computation.
 - Are there tasks that our computers cannot do?
 - O How do we prove lower bounds?
 - 3 Some canonical hard problems.

Course Structure

Course divided into three parts:

- Basic automata theory: finite state machines, regular languages, hint of context free languages/grammars, Turing Machines
- Algorithms and algorithm design techniques
- Undecidability and NP-Completeness, reductions to prove intractability of problems

Algorithmic thinking

- 2 Learn/remember some basic tricks, algorithms, problems, ideas
- Onderstand/appreciate limits of computation (intractability)
- Appreciate the importance of algorithms in computer science and beyond (engineering, mathematics, natural sciences, social sciences, ...)

History

History

Muhammad ibn Musa al-Khwarizmi (c.780-c.850)

Text on Algebra

على تسعام ونلتين ليتم السلح الانظام الذي هو سلح راه فبلغ ذلك كله ارمة وستين فاحذنا جذرها وهو لعانية وهو احد اصلاح السلح الاعلم فاذا للنصا منه مثل ما زدنا عليه وهو حسمة بقي للثة وهو نبلع سلح آب الذي هو المال وهو جذره والمال تستة وهذه صورته

ولما مال ولحد رعشرين مرهما يعدل عشرة أجدارة ذانا تجعل انال طعا مرينا جبيول الاملاع وهو سلم آن ثم تعم اله سلما متزاري الدلاع عرف عمل لحد الذاع سلم آن وه عليه من طراح متزاري السلمين جدينا على جدينا وقد علمان الناع ومن قسرة من العدد ان كل مطح مربع معداي الدلاع والزرابا قان احد انظامه مامريا لي واحد جذر نشاك السلم وي التي جذراء نلما قال مال وحد وعشرين يودل عشرة اجذاره علما ان طول غلع 74 حشرة اعداد ان نام جد جذر الذال قانسما علم جد بعض على ناسة. the first quadrate, which is the square, and the two quadrateges on its sides, which are the ten roots, make together thirsy-nine. In order to complete the great quadrate, there wants only a square of firse multiplied by five, or thereary-dow. This we add to thirty-nine, in order to complete the great squares S H. The sum is sixty-four. We saturate its nost, eight, which is one of the sidner of the great squares B, which is isone of the sidner of the great squares. By subtracting from this the same quantity which we have before added, namely firse, we obtain three so the remainder. This is the side of the quadrangle A B, which represents the square; it is the cost of this aquare, and the square ised i nine. This is the figure :--

Ģ	в	
20	D	

We represent the square by a quadrate A D, the length of whose side we do not know. To this we join a parallelogram, the breadth of which is equal to one of the aides of the quadrate A D, such as the side H N. This paralellogram is H B. The length of the two

Algorithm Description

If some one says: "You divide ten into two parts: multiply the one by itself; it will be equal to the other taken eighty-one times." Computation: You say, ten less a thing, multiplied by itself, is a hundred plus a square less twenty things, and this is equal to eighty-one things. Separate the twenty things from a hundred and a square, and add them to eighty-one. It will then be a hundred plus a square, which is equal to a hundred and one roots.

Algorithm Description

If some one says: "You divide ten into two parts: multiply the one by itself; it will be equal to the other taken eighty-one times." Computation: You say, ten less a thing, multiplied by itself, is a hundred plus a square less twenty things, and this is equal to eighty-one things. Separate the twenty things from a hundred and a square, and add them to eighty-one. It will then be a hundred plus a square, which is equal to a hundred and one roots.

$$(10 - x)^2 = 81x$$

 $x^2 - 20x + 100 = 81x$
 $x^2 + 100 = 101x$

Models of Computation vs Computers

- Model of Computation: an "idealized mathematical construct" that describes the primitive instructions and other details
- Computer: an actual "physical device" that implements a very specific model of computation

First Computer

Babbage's analytical engine—designed in 1837, never built.

Fall 2019 23 / 33

First Program

							Data									Working Variables.			1	Reads Vi	ristics	
Stader of Openfue	Nature of Operation	Variables asted open.	Variables receiving results.	Indication of change in the value on any Voriable.	Summert of Benelo.	2000-1-	Nonon N	5°000 -	20000 [£0***	10000 C	5.00 0 0 0	50++0 D	\$^0000		60 0 0 0 0	40000 e	¥000	Ju Babasto	Ju SchwellOn State	P Monto 0	F.0000 H.
1 2 3 4 5 7	×	$W_2 \times 2T_3$ $W_4 - 2T_1$ $W_4 + 2T_4$ $W_5 + 2T_4$ $W_1 - 2T_4$ $W_3 - 2T_4$	× ₁ , i ₁ , i ₂ , i ₃ × ₁ × ₁ × ₁ × ₁ × ₁ × ₁ × ₁ × ₁	$\frac{r_{1}^{2}r_{1}^{2}r_{1}r_{1}r_{1}r_{1}r_{2}r_{1}r_{1}r_{1}r_{1}r_{1}r_{1}r_{1}r_{1$	$\begin{array}{l} = 9 \\ = 2 \\ = 2 \\ = 1 \\$	1 1	3		2 s 2 n - 1 0 	2 = 1	F1	1 1 1 1		1 1 1 1	 n = 1	$ \frac{\frac{2n-1}{2n+1}}{\frac{1}{2},\frac{2n-1}{2n+1}} $	NEW TO A	$-\frac{1}{2}, \frac{2n-1}{2n+1} - \lambda_{n}$				
8 - 9 - 10 - 11 - 12 -	+ + + + + + + + + + + + + + + + + + +	$ \pi_{4} + \pi_{2} \pi_{6} + \pi_{2} \pi_{13} \times \pi_{10} \pi_{12} \times \pi_{10} \pi_{12} + \pi_{10} \pi_{12} + \pi_{10} \pi_{10} - \pi_{1} $	ν ₂ ν _η ν _θ η _u η _u	$\{ \begin{matrix} n_1 & n_2 & n_3 \\ n_1 & n_2 & n_3 \\ n_4 & n_4 & n_5 \\ n_4 & n_4 & n_5 \\ n_4 & n_4 & n_5 \\ n_5 & n_4 & n_5 \\ n_5 & n_5 & n_5 \\ n_5 & $	$\begin{array}{l} =2+0=2\\ =\frac{2+}{2}=\lambda_{1}\\ =b_{1},\ \frac{2+}{2}=b_{1}\lambda_{2}\\ =-\frac{1}{2},\ \frac{2+}{2}=-1\\ =\lambda_{1}+1\\ =\lambda_{2}-1\\ =\lambda_{2}-1\\$		3		1111		2		1 1 1 1			$\frac{\frac{2\pi}{2} = \delta_1}{\frac{2\pi}{2} = \delta_1}$	B ₁ . ² s 7 = B ₁ A ₁ 0	$\left\{-\frac{1}{2}, \frac{2\pi-3}{2\pi+1} + 0, \frac{2\pi}{2}\right\}$	8,	10 X 4 M - 1		
13 14 15 17 18 19 20 11 20 20	- + + × - + + × × + -	$W_{4} - W_{1}$ $W_{3} + W_{2}$ $W_{4} + W_{2}$ $W_{6} + W_{2}$ $W_{6} - W_{1}$ $W_{1} + W_{2}$ $W_{1} + W_{2}$ $W_{2} + W_{1}$ $W_{2} + W_{1}$ $W_{2} + W_{1}$ $W_{2} - W_{1}$	π ₄ ¹ V ₂ ¹ V ₃ ¹ V ₆ ¹ V ₆ ¹ V ₆ ¹ T ₁₀ ¹ T ₁₀		$\begin{array}{c} 2n+1\\ =2n+1\\ =3\\ \frac{2n-3}{2}\\ =\frac{2n-3}{2}\\ =\frac{2n-3}{2}\\ =2n-2\\ =2n$						2 n - 1 2 n - 1 2 n - 1 2 n - 1	3 . 4	3 9			$\begin{cases} \frac{9n}{2}, \frac{9n-1}{3} \\ \left\{ \frac{9n}{2}, \frac{9n-1}{3} \\ -\frac{9n-2}{3} \\ -\frac{9n-2}{3} \\ -\frac{9n-2}{3} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	B ₂ A ₂ 9	$\left\{ A_{1}+B_{1}A_{2}+B_{2}A_{3}\right\}$		82		「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
94 95	+ +	*Ta+*Ya	w ₂₀		= 8, ==+1=4+1=5 by a Variable-rand.		1 1				0	of Ope			50 tmcs		-		1			87

Ada Lovelace's "Note G" describing how to calculate Bernouilli numbers using the analytical engine.

First Bug!

							Data									Working Variables.				Reality V	arishics.	
Sumber of OpenGar	Sa a	uriables asted sprm.	Variables receiving results.	Indication of change in the value on any Voriable.	Statement of Books.	1000	Non02	5.000- ×	20000	50+++	0000 U	5.0see	50+++ []	\$^0000		60 0 0 0 0		¥0 0 **	Ju Bahas	In Balanton	P Andread On Strend of Strends	Paoo B
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		x^{iT_3} x^{iT_3}	ν ₁		$\begin{array}{l} =9:\\ =2:-1,\\ =2:+1,\\ =2:+1,\\ =2:+1,\\ =3:+1,\\ =3:-1,\\ =2:-1,\\ =3$	1 1 1 1 1	2		2 s 2 s 0 	2 × 1 9 · · · · · · · · · · · · · · · · · · ·	Fs.			1 1 1	 n = 1	$\frac{2u-1}{2u+1}$ $\frac{1}{2}\frac{2u-1}{2u+1}$ $\frac{1}{2}\frac{2u-1}{2u+1}$		$=\frac{1}{2}, \frac{2n-1}{2n+1} = 3_{n}$				
9 - 10 3 11 - 12 -		+77; 1× ⁹⁷ 11 1+77 11 1+77 11	η _n η _e η _b	$\begin{cases} \eta_{1}^{*} - \eta_{1}^{*} \\ \eta_{1} - \eta_{2}^{*} \\ \eta_{2} - \eta_{3}^{*} \\ \eta_{3} - \eta_{3}^{*} \\ \eta_{3} - \eta_{3}^{*} \\ \eta_{3} - \eta_{3}^{*} \\ \eta_{4}^{*} - \eta_{3}^{*} \\ \eta_{4}^{*} - \eta_{4}^{*} \end{cases}$	$\begin{aligned} &= \frac{2\pi}{2} = 3_1 \\ &= \mathbb{P}_1 + \frac{2\pi}{2} = \mathbb{P}_1 \beta_1 \\ &= -\frac{1}{2} \cdot \frac{2\pi - 1}{2\pi + 1} + \mathbb{P}_1 - \frac{2\pi}{2} \\ &= -\pi - 2 (= 2) \end{aligned}$				1 1 1 1		2		1 1 1 1	1 1 1 1		$\frac{\frac{2}{2}a}{\frac{2}{2}} = \delta_1$ $\frac{\frac{2}{2}a}{\frac{2}{2}} = \delta_1$	31.2 <u>8</u> -31A	$\left\{-\frac{1}{2}, \frac{2n-1}{2n+1} + 0, -\frac{2n}{2}\right\}$	8,	14.00		
	$- v_{e}$ + v_{e} + v_{e} + v_{e} + v_{e} + v_{e} + v_{e} + v_{e} + v_{e} + v_{e} + v_{e}	-15 +15 +15 +15 +17 +17 +17 +17 +17 +17 +17 +17	п., 15		$\begin{array}{l} x = 1 \\ x = 1 \\ z = 1 \\$						2 n - 1 2 n - 1 2 n - 1 2 n - 1 2 n - 1 		2a			$\begin{cases} \frac{y_n}{2}, \frac{y_{n-1}}{3} \\ \frac{y_n}{2}, \frac{y_{n-2}}{3} \\ \frac{y_n}{2}, \frac{y_{n-2}}{3} \\ \frac{y_n}{2} \\ \frac{y_n}{3} \\ y_n$	15, A2 3	$\left\{A_{i}+B_{i}A_{i}+B_{i}A_{j}\right\}$		8,		
14	+ 4	u+***	v	$\begin{cases} x_1 & = x_2 \\ x_2 & = x_2 \\ x_3 & = x_3 \\ x_4 & = x_3 \\ x_5 & = x_5 $	= 8,	1			5cre fal		0	of Ope				9-firee.			1			E ₇

Ada Lovelace's "Note G" describing how to calculate Bernouilli numbers using the analytical engine. This version contains a bug!

Models of Computation vs. Computers

Models and devices:

- Algorithms: usually at a high level in a model
- ② Device construction: usually at a low level
- Intermediaries: compilers
- How precise? Depends on the problem!
- 9 Physics helps implement a model of computer
- 9 Physics also inspires models of computation

Problem Given two n-digit numbers x and y, compute their sum.

Basic addition		
	3141 +7798 10939	
	10000	

Adding Numbers

```
c = 0
for i = 1 to n do
z = x_i + y_i
z = z + c
If (z > 10)
c = 1
z = z - 10 (equivalently the last digit of z)
Else c = 0
print z
End For
If (c == 1) print c
```

Adding Numbers

```
c = 0
for i = 1 to n do
z = x_i + y_i
z = z + c
If (z > 10)
c = 1
z = z - 10 (equivalently the last digit of z)
Else c = 0
print z
End For
If (c == 1) print c
```

Primitive instruction is addition of two digits

② Algorithm requires O(n) primitive instructions

Problem Given two *n*-digit numbers *x* and *y*, compute their product.

Grade School Multiplication

Compute "partial product" by multiplying each digit of y with x and adding the partial products.

	31	41
×	27	18
2	251	28
З	314	1
219	87	•
528	32	
353	372	38

Time analysis of grade school multiplication

- Each partial product: $\Theta(n)$ time
- Number of partial products: < n</p>
- Solution $\Theta(n)$ (Why?) Additions each $\Theta(n)$ (Why?)
- Total time: $\Theta(n^2)$
- Is there a faster way?

Fast Multiplication

Best known algorithm: $O(n \log n \cdot 4^{\log^* n})$ by Harvey and van der Hoeven, published in 2018! **Conjecture:** there exists an $O(n \log n)$ time algorithm

Fast Multiplication

Best known algorithm: $O(n \log n \cdot 4^{\log^* n})$ by Harvey and van der Hoeven, published in 2018! **Conjecture:** there exists an $O(n \log n)$ time algorithm

We don't fully understand multiplication! Computation and algorithm design is non-trivial!

Aside about O-notation

Some previous versions of multiplication are still widely used:

- Karatsuba algorithm $O(n^{\log_2 3})$ [1962]
- Schönhage-Strassen (FFT) O(n log n log log n) [1971]

Why?

Some previous versions of multiplication are still widely used:

- Karatsuba algorithm $O(n^{\log_2 3})$ [1962]
- Schönhage-Strassen (FFT) O(n log n log log n) [1971]

Why? Fürer's algorithm (2007) $O(n2^{O(\log^* n)})$

Some previous versions of multiplication are still widely used:

- Karatsuba algorithm $O(n^{\log_2 3})$ [1962]
- Schönhage-Strassen (FFT) O(n log n log log n) [1971]

Why? Fürer's algorithm (2007) $O(n2^{O(\log^* n)})$... beats Schönhage-Strassen for numbers greater than $2^{2^{64}}$.