A subsequence of a sequence (for example, an array, linked list, or string), obtained by removing zero or more elements and keeping the rest in the same sequence order. A subsequence is called a substring if its elements are contiguous in the original sequence. For example:

- SUBSEQUENCE, UBSEQU, and the empty string ε are all substrings (and therefore subsequences) of the string SUBSEQUENCE;
- SBSQNC, SQUEE, and EEE are all subsequences of SUBSEQUENCE but not substrings;
- QUEUE, EQUUS, and DIMAGGIO are not subsequences (and therefore not substrings) of SUBSEQUENCE.

Describe recursive backtracking algorithms for the following problems. Don't worry about running times.

1. Given an array $A[1 . . n]$ of integers, compute the length of a longest increasing subsequence. A sequence $B[1 . . \ell]$ is increasing if $B[i]>B[i-1]$ for every index $i \geq 2$.

For example, given the array

$$
\langle 3, \underline{1}, \underline{4}, 1, \underline{\mathbf{5}}, 9,2, \underline{\mathbf{6}}, 5,3,5, \underline{8}, \underline{9}, 7,9,3,2,3,8,4,6,2,7\rangle
$$

your algorithm should return the integer 6 , because $\langle 1,4,5,6,8,9\rangle$ is a longest increasing subsequence (one of many).
2. Given an array $A[1 . . n]$ of integers, compute the length of a longest decreasing subsequence. A sequence $B[1 . . \ell]$ is decreasing if $B[i]<B[i-1]$ for every index $i \geq 2$.

For example, given the array

$$
\langle 3,1,4,1,5, \underline{9}, 2, \underline{\mathbf{6}}, 5,3, \underline{\mathbf{5}}, 8,9,7,9,3,2,3,8, \underline{\mathbf{4}}, 6, \underline{\mathbf{2}}, 7\rangle
$$

your algorithm should return the integer 5 , because $\langle 9,6,5,4,2\rangle$ is a longest decreasing subsequence (one of many).
3. Given an array $A[1 . . n]$ of integers, compute the length of a longest alternating subsequence. A sequence $B[1 . . \ell]$ is alternating if $B[i]<B[i-1]$ for every even index $i \geq 2$, and $B[i]>B[i-1]$ for every odd index $i \geq 3$.

For example, given the array

$$
\langle\underline{3}, \underline{1}, \underline{4}, \underline{1}, \underline{\mathbf{5}}, 9, \underline{\mathbf{2}}, \underline{\mathbf{6}}, \underline{5}, 3,5, \underline{8}, 9, \underline{\mathbf{7}}, \underline{9}, \underline{3}, 2,3, \underline{8}, \underline{4}, \underline{\mathbf{6}}, \underline{\mathbf{2}}, \underline{7}\rangle
$$

your algorithm should return the integer 17 , because $\langle 3,1,4,1,5,2,6,5,8,7,9,3,8,4,6,2,7\rangle$ is a longest alternating subsequence (one of many).

To think about later:

4. Given an array $A[1 \ldots n]$ of integers, compute the length of a longest convex subsequence of A. A sequence $B[1 . . \ell]$ is convex if $B[i]-B[i-1]>B[i-1]-B[i-2]$ for every index $i \geq 3$.

For example, given the array

$$
\langle\underline{3}, \underline{1}, 4, \underline{1}, 5,9, \underline{2}, 6,5,3, \underline{5}, 8, \underline{9}, 7,9,3,2,3,8,4,6,2,7\rangle
$$

your algorithm should return the integer 6 , because $\langle 3,1,1,2,5,9\rangle$ is a longest convex subsequence (one of many).
5. Given an array $A[1 . . n]$, compute the length of a longest palindrome subsequence of A. Recall that a sequence $B[1 . . \ell]$ is a palindrome if $B[i]=B[\ell-i+1]$ for every index i.

For example, given the array

$$
\langle 3,1, \underline{4}, 1,5, \underline{9}, 2,6, \underline{5}, \underline{3}, \underline{5}, 8,9,7, \underline{9}, 3,2,3,8, \underline{4}, 6,2,7\rangle
$$

your algorithm should return the integer 7 , because $\langle 4,9,5,3,5,9,4\rangle$ is a longest palindrome subsequence (one of many).

