Describe recursive backtracking algorithms for the following problems. Don't worry about running times.

1. Given an array $A[1 . . n]$ of integers, compute the length of a longest increasing subsequence.

Solution (\#1 of ∞): Add a sentinel value $A[0]=-\infty$. Let $L I S(i, j)$ denote the length of the longest increasing subsequence of $A[j . . n]$ where every element is larger than $A[i]$. This function obeys the following recurrence:

$$
\operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LIS}(i, j+1) & \text { if } j \leq n \text { and } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1)\} & \text { otherwise }\end{cases}
$$

We need to compute $\operatorname{LIS}(0,1)$.

Solution (\#2 of ∞): Add a sentinel value $A[n+1]=-\infty$. Let $L I S(i, j)$ denote the length of the longest increasing subsequence of $A[1 . . j]$ where every element is smaller than $A[j]$. This function obeys the following recurrence:

$$
\operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } i<1 \\ \operatorname{LIS}(i-1, j) & \text { if } i \geq 1 \text { and } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i-1, j), 1+\operatorname{LIS}(i-1, i)\} & \text { otherwise }\end{cases}
$$

We need to compute $\operatorname{LIS}(n, n+1)$.

Solution (\#3 of ∞): Let $\operatorname{LIS}(i)$ denote the length of the longest increasing subsequence of $A[i . . n]$ that begins with $A[i]$. This function obeys the following recurrence:

$$
\operatorname{LIS}(i)= \begin{cases}1 & \text { if } A[j] \leq A[i] \text { for all } j>i \\ 1+\max \{\operatorname{LIS}(j) \mid j>i \text { and } A[j]>A[i]\} & \text { otherwise }\end{cases}
$$

(The first case is actually redundant if we define $\max \varnothing=0$.) We need to compute $\max _{i} L I S(i)$.

Solution (\#4 of ∞): Add a sentinel value $A[0]=-\infty$. Let $L I S(i)$ denote the length of the longest increasing subsequence of $A[i . . n]$ that begins with $A[i]$. This function obeys the following recurrence:

$$
\operatorname{LIS}(i)= \begin{cases}1 & \text { if } A[j] \leq A[i] \text { for all } j>i \\ 1+\max \{\operatorname{LIS}(j) \mid j>i \text { and } A[j]>A[i]\} & \text { otherwise }\end{cases}
$$

(The first case is actually redundant if we define $\max \varnothing=0$.) We need to compute $\operatorname{LIS}(0)-1$; the -1 removes the sentinel $-\infty$ from the start of the subsequence.

Solution (\#5 of ∞): Add sentinel values $A[0]=-\infty$ and $A[n+1]=\infty$. Let $\operatorname{LIS}(j)$ denote the length of the longest increasing subsequence of $A[1 . . j]$ that ends with $A[j]$. This function obeys the following recurrence:

$$
\operatorname{LIS}(j)= \begin{cases}1 & \text { if } j=0 \\ 1+\max \{\operatorname{LIS}(i) \mid i<j \text { and } A[i]<A[j]\} & \text { otherwise }\end{cases}
$$

We need to compute $\operatorname{LIS}(n+1)-2$; the -2 removes the sentinels $-\infty$ and ∞ from the subsequence.
2. Given an array $A[1 \ldots n]$ of integers, compute the length of a longest decreasing subsequence.

Solution (one of many): Add a sentinel value $A[0]=\infty$. Let $L D S(i, j)$ denote the length of the longest decreasing subsequence of $A[j \ldots n]$ where every element is smaller than $A[i]$. This function obeys the following recurrence:

$$
\operatorname{LDS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LDS}(i, j+1) & \text { if } j \leq n \text { and } A[i] \leq A[j] \\ \max \{\operatorname{LDS}(i, j+1), 1+\operatorname{LIS}(j, j+1)\} & \text { otherwise }\end{cases}
$$

We need to compute $\operatorname{LDS}(0,1)$.

Solution (clever): Multiply every element of A by -1 , and then compute the length of the longest increasing subsequence using the algorithm from problem 1.
3. Given an array $A[1 \ldots n]$ of integers, compute the length of a longest alternating subsequence.

Solution (one of many): We define two functions:

- Let $L A S^{+}(i, j)$ denote the length of the longest alternating subsequence of $A[j \ldots n]$ whose first element (if any) is larger than $A[i]$ and whose second element (if any) is smaller than its first.
- Let $L A S^{-}(i, j)$ denote the length of the longest alternating subsequence of $A[j . . n]$ whose first element (if any) is smaller than $A[i]$ and whose second element (if any) is larger than its first.

These two functions satisfy the following mutual recurrences:

$$
\begin{aligned}
& L A S^{+}(i, j)= \begin{cases}0 & \text { if } j>n \\
L A S^{+}(i, j+1) & \text { if } j \leq n \text { and } A[j] \leq A[i] \\
\max \left\{L A S^{+}(i, j+1), 1+L A S^{-}(j, j+1)\right\} & \text { otherwise }\end{cases} \\
& L A S^{-}(i, j)= \begin{cases}0 & \text { if } j>n \\
\operatorname{LAS}(i, j+1) & \text { if } j \leq n \text { and } A[j] \geq A[i] \\
\max \left\{L A S^{-}(i, j+1), 1+L A S^{+}(j, j+1)\right\} & \text { otherwise }\end{cases}
\end{aligned}
$$

To simplify computation, we consider two different sentinel values $A[0]$. First we set $A[0]=-\infty$ and let $\ell^{+}=\operatorname{LAS}^{+}(0,1)$. Then we set $A[0]=+\infty$ and let $\ell^{-}=L A S^{-}(0,1)$. Finally, the length of the longest alternating subsequence of A is $\max \left\{\ell^{+}, \ell^{-}\right\}$.

Solution (one of many): We define two functions:

- Let $L A S^{+}(i)$ denote the length of the longest alternating subsequence of $A[i$.. $n]$ that starts with $A[i]$ and whose second element (if any) is larger than $A[i]$.
- Let $L A S^{-}(i)$ denote the length of the longest alternating subsequence of $A[i . . n]$ that starts with $A[i]$ and whose second element (if any) is smaller than $A[i]$.

These two functions satisfy the following mutual recurrences:

$$
\begin{aligned}
& L A S^{+}(i)= \begin{cases}1 & \text { if } A[j] \leq A[i] \text { for all } j>i \\
1+\max \left\{L A S^{-}(j) \mid j>i \text { and } A[j]>A[i]\right\} & \text { otherwise }\end{cases} \\
& L^{-} S^{-}(i)= \begin{cases}1 & \text { if } A[j] \geq A[i] \text { for all } j>i \\
1+\max \left\{L A S^{+}(j) \mid j>i \text { and } A[j]<A[i]\right\} & \text { otherwise }\end{cases}
\end{aligned}
$$

We need to compute $\max _{i} \max \left\{L A S^{+}(i), L A S^{-}(i)\right\}$.

To think about later:

4. Given an array $A[1 . . n]$ of integers, compute the length of a longest convex subsequence of A.

Solution: Let $\operatorname{LCS}(i, j)$ denote the length of the longest convex subsequence of $A[i . . n]$ whose first two elements are $A[i]$ and $A[j]$. This function obeys the following recurrence:

$$
\operatorname{LCS}(i, j)=1+\max \{\operatorname{LCS}(j, k) \mid j<k \leq n \text { and } A[i]+A[k]>2 A[j]\}
$$

Here we define $\max \varnothing=0$; this gives us a working base case. The length of the longest convex subsequence is $\max _{1 \leq i<j \leq n} \operatorname{LCS}(i, j)$.

Solution (with sentinels): Assume without loss of generality that $A[i] \geq 0$ for all i. (Otherwise, we can add $|m|$ to each $A[i]$, where m is the smallest element of $A[1 . . n]$.) Add two sentinel values $A[0]=2 M+1$ and $A[-1]=4 M+3$, where M is the largest element of $A[1 . . n]$.

Let $\operatorname{LCS}(i, j)$ denote the length of the longest convex subsequence of $A[i . . n]$ whose first two elements are $A[i]$ and $A[j]$. This function obeys the following recurrence:

$$
\operatorname{LCS}(i, j)=1+\max \{\operatorname{LCS}(j, k) \mid j<k \leq n \text { and } A[i]+A[k]>2 A[j]\}
$$

Here we define $\max \varnothing=0$; this gives us a working base case.
Finally, we claim that the length of the longest convex subsequence of $A[1 . . n]$ is $\operatorname{LCS}(-1,0)-2$.
Proof: First, consider any convex subsequence S of $A[1 . . n]$, and suppose its first element is $A[i]$. Then we have $A[-1]-2 A[0]+A[i]=4 M+3-2(2 M+1)+A[i]=A[i]+1>0$, which implies that $A[-1] \cdot A[0] \cdot S$ is a convex subsequence of $A[-1 . . n]$. So the longest convex subsequence of $A[1 . . n]$ has length at most $\operatorname{LCS}(-1,0)-2$.

On the other hand, removing $A[-1]$ and $A[0]$ from any convex subsequence of $A[-1 . . n]$ laves a convex subsequence of $A[1 . . n]$. So the longest subsequence of $A[1 . . n]$ has length at least $\operatorname{LCS}(-1,0)-2$.
5. Given an array $A[1 . . n]$, compute the length of a longest palindrome subsequence of A.

Solution (naïve): Let $L P S(i, j)$ denote the length of the longest palindrome subsequence of $A[i . . j]$. This function obeys the following recurrence:

$$
L P S(i, j)=\left\{\begin{array}{ll}
0 & \text { if } i>j \\
1 & \text { if } i=j \\
\max \left\{\begin{array}{c}
\operatorname{LPS}(i+1, j) \\
L P S(i, j-1)
\end{array}\right\} & \text { if } i<j \text { and } A[i] \neq A[j] \\
\max \left\{\begin{array}{c}
2+\operatorname{LPS}(i+1, j-1) \\
L P S(i+1, j) \\
L P S(i, j-1)
\end{array}\right\}
\end{array} \quad \text { otherwise } \quad l\right.
$$

We need to compute $\operatorname{LPS}(1, n)$.
Solution (with greedy optimization): Let $\operatorname{LPS}(i, j)$ denote the length of the longest palindrome subsequence of $A[i . . j]$. Before stating a recurrence for this function, we make the following useful observation. ${ }^{1}$

Claim 1. If $i<j$ and $A[i]=A[j]$, then $\operatorname{LPS}(i, j)=2+\operatorname{LPS}(i+1, j-1)$.
Proof: Suppose $i<j$ and $A[i]=A[j]$. Fix an arbitrary longest palindrome subsequence S of $A[i . . j]$. There are four cases to consider.

- If S uses neither $A[i]$ nor $A[j]$, then $A[i] \cdot S \bullet A[j]$ is a palindrome subsequence of $A[i . . j]$ that is longer than S, which is impossible.
- Suppose S uses $A[i]$ but not $A[j]$. Let $A[k]$ be the last element of S. If $k=i$, then $A[i] \cdot A[j]$ is a palindrome subsequence of $A[i . . j]$ that is longer than S, which is impossible. Otherwise, replacing $A[k]$ with $A[j]$ gives us a palindrome subsequence of $A[i . . j]$ with the same length as S that uses both $A[i]$ and $A[j]$.
- Suppose S uses $A[j]$ but not $A[i]$. Let $A[h]$ be the first element of S. If $h=j$, then $A[i] \cdot A[j]$ is a palindrome subsequence of $A[i . . j]$ that is longer than S, which is impossible. Otherwise, replacing $A[h]$ with $A[i]$ gives us a palindrome subsequence of $A[i . . j]$ with the same length as S that uses both $A[i]$ and $A[j]$.
- Finally, S might include both $A[i]$ and $A[j]$.

In all cases, we find either a contradiction or a longest palindrome subsequence of $A[i . . j]$ that uses both $A[i]$ and $A[j]$.

Claim 1 implies that the function $L P S$ satisfies the following recurrence:

$$
\operatorname{LPS}(i, j)= \begin{cases}0 & \text { if } i>j \\ 1 & \text { if } i=j \\ \max \{\operatorname{LPS}(i+1, j), \operatorname{LPS}(i, j-1)\} & \text { if } i<j \text { and } A[i] \neq A[j] \\ 2+\operatorname{LPS}(i+1, j-1) & \text { otherwise }\end{cases}
$$

We need to compute $\operatorname{LPS}(1, n)$.

[^0]
[^0]: ${ }^{1}$ And yes, optimizations like this require a proof of correctness, both in homework and on exams. Premature optimization is the root of all evil.

