In lecture, we described an algorithm of Karatsuba that multiplies two *n*-digit integers using $O(n^{\lg 3})$ single-digit additions, subtractions, and multiplications. In this lab we'll look at some extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an *n*-digit number and an *m*-digit number, where m < n, in $O(m^{\lg 3 - 1}n)$ time.

Solution: Split the larger number into $\lceil n/m \rceil$ chunks, each with m digits. Multiply the smaller number by each chunk in $O(m^{\lg 3})$ time using Karatsuba's algorithm, and then add the resulting partial products with appropriate shifts.

```
 \begin{array}{l} \underbrace{ \texttt{SKEWMULTIPLY}(x[0 \dots m-1], y[0 \dots n-1]):} \\ prod \leftarrow 0 \\ offset \leftarrow 0 \\ \text{for } i \leftarrow 0 \text{ to } \lceil n/m \rceil - 1 \\ chunk \leftarrow y[i \cdot m \dots (i+1) \cdot m - 1] \\ prod \leftarrow prod + \texttt{MULTIPLY}(x, chunk) \cdot 10^{i \cdot m} \\ \text{return } prod \end{array}
```

Each call to MULTIPLY requires $O(m^{\lg 3})$ time, and all other work within a single iteration of the main loop requires O(m) time. Thus, the overall running time of the algorithm is $O(1) + \lceil n/m \rceil O(m^{\lg 3}) = O(m^{\lg 3-1}n)$ as required.

This is the standard method for multiplying a large integer by a single "digit" integer written in base 10^m , but with each single-"digit" multiplication implemented using Karatsuba's algorithm.

2. Describe an algorithm to compute the decimal representation of 2^n in $O(n^{\lg 3})$ time. (The standard algorithm that computes one digit at a time requires $\Theta(n^2)$ time.)

Solution: We compute 2^n via repeated squaring, implementing the following recurrence:

$$2^{n} = \begin{cases} 1 & \text{if } n = 0\\ (2^{n/2})^{2} & \text{if } n > 0 \text{ is even}\\ 2 \cdot (2^{\lfloor n/2 \rfloor})^{2} & \text{if } n \text{ is odd} \end{cases}$$

We use Karatsuba's algorithm to implement decimal multiplication for each square.

 $\begin{array}{l} \underline{\text{TwoToThe}(n):}\\ \text{if }n=0\\ &\text{return 1}\\ m\leftarrow \lfloor n/2 \rfloor\\ z\leftarrow \text{TwoToThe}(m) & \langle\!\langle \textit{recurse!} \rangle\!\rangle\\ z\leftarrow \text{MULTIPLY}(z,z) & \langle\!\langle \textit{Karatsuba} \rangle\!\rangle\\ \text{if }n \text{ is odd}\\ &z\leftarrow \text{Add}(z,z)\\ \text{return }z \end{array}$

The running time of this algorithm satisfies the recurrence $T(n) = T(\lfloor n/2 \rfloor) + O(n^{\lg 3})$. We can safely ignore the floor in the recursive argument. The recursion tree for this algorithm is just a path; the work done at recursion depth *i* is $O((n/2^i)^{\lg 3}) = O(n^{\lg 3}/3^i)$. Thus, the levels sums form a descending geometric series, which is dominated by the work at level 0, so the total running time is at most $O(n^{\lg 3})$. 3. Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary *n*-bit binary number in $O(n^{\lg 3})$ time. [Hint: Let $x = a \cdot 2^{n/2} + b$. Watch out for an extra log factor in the running time.]

Solution: Following the hint, we break the input x into two smaller numbers $x = a \cdot 2^{n/2} + b$; recursively convert a and b into decimal; convert $2^{n/2}$ into decimal using the solution to problem 2; multiply a and $2^{n/2}$ using Karatsuba's algorithm; and finally add the product to b to get the final result.

Decimal $(x[0n-1])$:
if $n < 100$
use brute force
$m \leftarrow \lceil n/2 \rceil$
$a \leftarrow x[m \dots n-1]$
$b \leftarrow x[0 \dots m-1]$
return Add(Multiply(Decimal(a), TwoToThe(m)), Decimal(b))

The running time of this algorithm satisfies the recurrence $T(n) = 2T(n/2) + O(n^{\lg 3})$; the $O(n^{\lg 3})$ term includes the running times of both MULTIPLY and TWOTOTHE (as well as the final linear-time addition).

The recursion tree for this algorithm is a binary tree, with 2^i nodes at recursion depth *i*. Each recursive call at depth *i* converts an $n/2^i$ -bit binary number to decimal; the non-recursive work at the corresponding node of the recursion tree is $O((n/2^i)^{\lg 3}) = O(n^{\lg 3}/3^i)$. Thus, the total work at depth *i* is $2^i \cdot O(n^{\lg 3}/3^i) = O(n^{\lg 3}/(3/2)^i)$. The level sums define a descending geometric series, which is dominated by its largest term $O(n^{\lg 3})$.

Notice that if we had converted $2^{n/2}$ to decimal *recursively* instead of calling TwoToTHE, the recurrence would have been $T(n) = 3T(n/2) + O(n^{\lg 3})$. Every level of this recursion tree has the same sum, so the overall running time would be $O(n^{\lg 3} \log n)$.

Think about later:

*4. Suppose we can multiply two *n*-digit numbers in O(M(n)) time. Describe an algorithm to compute the decimal representation of an arbitrary *n*-bit binary number in $O(M(n) \log n)$ time.

Solution: We modify the solutions of problems 2 and 3 to use the faster multiplication algorithm instead of Karatsuba's algorithm. Let $T_2(n)$ and $T_3(n)$ denote the running times of TwoToThe and Decimal, respectively. We need to solve the recurrences

$$T_2(n) = T_2(n/2) + O(M(n))$$
 and $T_3(n) = 2T_3(n/2) + T_2(n) + O(M(n))$.

But how can we do that when we don't know M(n)?

For the moment, suppose $M(n) = O(n^c)$ for some constant c > 0. Since any algorithm to multiply two *n*-digit numbers must *read* all *n* digits, we have $M(n) = \Omega(n)$, and therefore $c \ge 1$. On the other hand, the grade-school lattice algorithm implies $M(n) = O(n^2)$, so we can safely assume $c \le 2$. With this assumption, the recursion tree method implies

$$T_2(n) = T_2(n/2) + O(n^c) \implies T_2(n) = O(n^c)$$

$$T_3(n) = 2T_3(n/2) + O(n^c) \implies T_3(n) = \begin{cases} O(n \log n) & \text{if } c = 1, \\ O(n^c) & \text{if } c > 1. \end{cases}$$

So in this case, we have $T_3(n) = O(M(n) \log n)$ as required.

In reality, M(n) may not be a simple polynomial, but we can effectively *ignore* any sub-polynomial noise using the following trick. Suppose we can write $M(n) = n^c \cdot \mu(n)$ for some constant c and some arbitrary non-decreasing function $\mu(n)$.¹

To solve the recurrence $T_2(n) = T_2(n/2) + O(M(n))$, we define a new function $\tilde{T}_2(n) = T_2(n)/\mu(n)$. Then we have

$$\tilde{T}_2(n) = \frac{T_2(n/2)}{\mu(n)} + \frac{O(M(n))}{\mu(n)} \le \frac{T_2(n/2)}{\mu(n/2)} + \frac{O(M(n))}{\mu(n)} = \tilde{T}_2(n/2) + O(n^c).$$

Here we used the inequality $\mu(n) \ge \mu(n/2)$; this the only fact about μ that we actually need. The recursion tree method implies $\tilde{T}_2(n) \le O(n^c)$, and therefore $T_2(n) \le O(n^c) \cdot \mu(n) = O(M(n))$.

Similarly, to solve the recurrence $T_3(n) = 2T_3(n/2) + O(M(n))$, we define $\tilde{T}_3(n) = T_3(n)/\mu(n)$, which gives us the recurrence $\tilde{T}_3(n) \le 2\tilde{T}_3(n/2) + O(n^c)$. The recursion tree method implies

$$\tilde{T}_3(n) \leq \begin{cases} O(n\log n) & \text{if } c = 1, \\ O(n^c) & \text{if } c > 1. \end{cases}$$

In both cases, we have $\tilde{T}_3(n) = O(n^c \log n)$, which implies that $T_3(n) = O(M(n) \log n)$.

¹A recent multiplication algorithm based on fast Fourier transforms runs in $O(n \log n 2^{O(\log^* n)})$ time, so we can safely assume that c = 1. But our solution doesn't use that fact.