In lecture, we described an algorithm of Karatsuba that multiplies two \(n \)-digit integers using \(O(n^{\lg 3}) \) single-digit additions, subtractions, and multiplications. In this lab we’ll look at some extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an \(n \)-digit number and an \(m \)-digit number, where \(m < n \), in \(O(m^{\lg 3 - 1} n) \) time.

Solution: Split the larger number into \(\lceil n/m \rceil \) chunks, each with \(m \) digits. Multiply the smaller number by each chunk in \(O(m^{\lg 3}) \) time using Karatsuba’s algorithm, and then add the resulting partial products with appropriate shifts.

```
SkewMultiply(x[0..m-1], y[0..n-1]):
    prod ← 0
    offset ← 0
    for i ← 0 to \( \lceil n/m \rceil - 1 \)
        chunk ← \( y[i \cdot m..(i + 1) \cdot m - 1] \)
        prod ← prod + Multiply(x, chunk) \cdot 10^{i \cdot m}
    return prod
```

Each call to \texttt{Multiply} requires \(O(m^{\lg 3}) \) time, and all other work within a single iteration of the main loop requires \(O(m) \) time. Thus, the overall running time of the algorithm is \(O(1) + \lceil n/m \rceil O(m^{\lg 3}) = O(m^{\lg 3 - 1} n) \) as required.

This is the standard method for multiplying a large integer by a single “digit” integer \textit{written in base} \(10^m \), but with each single-“digit” multiplication implemented using Karatsuba’s algorithm.
2. Describe an algorithm to compute the decimal representation of 2^n in $O(n^{\log_3 2})$ time. (The standard algorithm that computes one digit at a time requires $\Theta(n^2)$ time.)

Solution: We compute 2^n via repeated squaring, implementing the following recurrence:

$$2^n = \begin{cases}
1 & \text{if } n = 0 \\
\left(2^{n/2}\right)^2 & \text{if } n > 0 \text{ is even} \\
2 \cdot \left(2^{\lfloor n/2 \rfloor}\right)^2 & \text{if } n \text{ is odd}
\end{cases}$$

We use Karatsuba’s algorithm to implement decimal multiplication for each square.

```plaintext
TwoToThe(n):
  if n = 0
    return 1
  m ← \lfloor n/2 \rfloor
  z ← TwoToThe(m) \langle recurse! \rangle
  z ← Multiply(z, z) \langle Karatsuba \rangle
  if n is odd
    z ← Add(z, z)
  return z
```

The running time of this algorithm satisfies the recurrence $T(n) = T(\lfloor n/2 \rfloor) + O(n^{\log_3 2})$. We can safely ignore the floor in the recursive argument. The recursion tree for this algorithm is just a path; the work done at recursion depth i is $O((n/2^i)^{\log_3 2}) = O(n^{\log_3 2}/3^i)$. Thus, the levels sums form a descending geometric series, which is dominated by the work at level 0, so the total running time is at most $O(n^{\log_3 2})$. ■
3. Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary \(n \)-bit binary number in \(O(n \lg^3) \) time. [Hint: Let \(x = a \cdot 2^{n/2} + b \). Watch out for an extra \(\log \) factor in the running time.]

Solution: Following the hint, we break the input \(x \) into two smaller numbers \(x = a \cdot 2^{n/2} + b \); recursively convert \(a \) and \(b \) into decimal; convert \(2^{n/2} \) into decimal using the solution to problem 2; multiply \(a \) and \(2^{n/2} \) using Karatsuba’s algorithm; and finally add the product to \(b \) to get the final result.

\[
\text{Decimal}(x[0..n-1]):
\begin{align*}
\text{if } n < 100 & \text{ use brute force} \\
& m \leftarrow \lfloor n/2 \rfloor \\
& a \leftarrow x[m..n-1] \\
& b \leftarrow x[0..m-1] \\
& \text{return Add(Multiply(Decimal(a), TwoToThe(m)), Decimal(b))}
\end{align*}
\]

The running time of this algorithm satisfies the recurrence \(T(n) = 2T(n/2) + O(n \lg^3) \); the \(O(n \lg^3) \) term includes the running times of both \(\text{Multiply} \) and \(\text{TwoToThe} \) (as well as the final linear-time addition).

The recursion tree for this algorithm is a binary tree, with \(2^i \) nodes at recursion depth \(i \). Each recursive call at depth \(i \) converts an \(n/2^i \)-bit binary number to decimal; the non-recursive work at the corresponding node of the recursion tree is \(O((n/2^i)^{\lg^3}) = O(n^{\lg^3}/3^i) \). Thus, the total work at depth \(i \) is \(2^i \cdot O(n^{\lg^3}/3^i) = O(n^{\lg^3}/(3^i/2^i)) \). The level sums define a descending geometric series, which is dominated by its largest term \(O(n^{\lg^3}) \).

Notice that if we had converted \(2^{n/2} \) to decimal recursively instead of calling \(\text{TwoToThe} \), the recurrence would have been \(T(n) = 3T(n/2) + O(n^{\lg^3}) \). Every level of this recursion tree has the same sum, so the overall running time would be \(O(n^{\lg^3} \log n) \). ■
Think about later:

*4. Suppose we can multiply two \(n \)-digit numbers in \(O(M(n)) \) time. Describe an algorithm to compute the decimal representation of an arbitrary \(n \)-bit binary number in \(O(M(n) \log n) \) time.

Solution: We modify the solutions of problems 2 and 3 to use the faster multiplication algorithm instead of Karatsuba’s algorithm. Let \(T_2(n) \) and \(T_3(n) \) denote the running times of TwoToThe and Decimal, respectively. We need to solve the recurrences

\[
T_2(n) = T_2(n/2) + O(M(n)) \quad \text{and} \quad T_3(n) = 2T_3(n/2) + T_2(n) + O(M(n)).
\]

But how can we do that when we don’t know \(M(n) \)?

For the moment, suppose \(M(n) = O(n^c) \) for some constant \(c > 0 \). Since any algorithm to multiply two \(n \)-digit numbers must read all \(n \) digits, we have \(M(n) = \Omega(n) \), and therefore \(c \geq 1 \). On the other hand, the grade-school lattice algorithm implies \(M(n) = O(n^2) \), so we can safely assume \(c \leq 2 \). With this assumption, the recursion tree method implies

\[
T_2(n) = T_2(n/2) + O(n^c) \quad \Rightarrow \quad T_2(n) = O(n^c)
\]

\[
T_3(n) = 2T_3(n/2) + O(n^c) \quad \Rightarrow \quad T_3(n) = \begin{cases} O(n \log n) & \text{if } c = 1, \\ O(n^c) & \text{if } c > 1. \end{cases}
\]

So in this case, we have \(T_3(n) = O(M(n) \log n) \) as required.

In reality, \(M(n) \) may not be a simple polynomial, but we can effectively ignore any sub-polynomial noise using the following trick. Suppose we can write \(M(n) = n^c \cdot \mu(n) \) for some constant \(c \) and some arbitrary non-decreasing function \(\mu(n) \).

To solve the recurrence \(T_2(n) = T_2(n/2) + O(M(n)) \), we define a new function \(\tilde{T}_2(n) = T_2(n)/\mu(n) \). Then we have

\[
\tilde{T}_2(n) = \frac{T_2(n/2)}{\mu(n)} + \frac{O(M(n))}{\mu(n)} \leq \frac{T_2(n/2)}{\mu(n/2)} + \frac{O(M(n))}{\mu(n)} = \tilde{T}_2(n/2) + O(n^c).
\]

Here we used the inequality \(\mu(n) \geq \mu(n/2) \); this the only fact about \(\mu \) that we actually need. The recursion tree method implies \(\tilde{T}_2(n) \leq O(n^c) \), and therefore \(T_2(n) \leq O(n^c) \cdot \mu(n) = O(M(n)) \).

Similarly, to solve the recurrence \(T_3(n) = 2T_3(n/2) + O(M(n)) \), we define \(\tilde{T}_3(n) = T_3(n)/\mu(n) \), which gives us the recurrence \(\tilde{T}_3(n) \leq 2\tilde{T}_3(n/2) + O(n^c) \). The recursion tree method implies

\[
\tilde{T}_3(n) \leq \begin{cases} O(n \log n) & \text{if } c = 1, \\ O(n^c) & \text{if } c > 1. \end{cases}
\]

In both cases, we have \(\tilde{T}_3(n) = O(n^c \log n) \), which implies that \(T_3(n) = O(M(n) \log n) \). □

1A recent multiplication algorithm based on fast Fourier transforms runs in \(O(n \log n \cdot 2^{O(\log^* n)}) \) time, so we can safely assume that \(c = 1 \). But our solution doesn’t use that fact.