Let L be an arbitrary regular language over the alphabet $\Sigma=\{0,1\}$. Prove that the following languages are also regular. (You probably won't get to all of these.)

1. FlipOdds $(L):=\{$ flipOdds $(w) \mid w \in L\}$, where the function flipOdds inverts every oddindexed bit in w. For example:

$$
\text { flipOdds(0000111101010101) }=1010010111111111
$$

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct a new DFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts FlipOdds (L) as follows.

Intuitively, M^{\prime} receives some string flipOdds(w) as input, restores every other bit to obtain w, and simulates M on the restored string w.

Each state (q,flip) of M^{\prime} indicates that M is in state q, and we need to flip the next input bit if flip = True

$$
\begin{aligned}
Q^{\prime} & =Q \times\{\text { True, FALSE }\} \\
s^{\prime} & =(s, \text { True }) \\
A^{\prime} & = \\
\delta^{\prime}((q, f l i p), a) & =
\end{aligned}
$$

2. UnflipOdd1s $(L):=\left\{w \in \Sigma^{*} \mid f l i p O d d 1 s(w) \in L\right\}$, where the function flipOdd1 inverts every other 1 bit of its input string, starting with the first 1. For example:

$$
\text { flipOdd } 1 s(0000 \underline{1} 1 \underline{1} 10 \underline{1} 010 \underline{1} 01)=0000 \underline{0} 1 \underline{1} 10 \underline{0} 010 \underline{0} 01
$$

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct a new DFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts UnflipOdd1s(L) as follows.

Intuitively, M^{\prime} receives some string w as input, flips every other 1 bit, and simulates M on the transformed string.

Each state (q, flip) of M^{\prime} indicates that M is in state q, and we need to flip the next 1 bit of and only if flip = True.

$$
\begin{aligned}
Q^{\prime} & =Q \times\{\text { True, FALSE }\} \\
s^{\prime} & =(s, \text { TRUE }) \\
A^{\prime} & = \\
\delta^{\prime}((q, f l i p), a) & =
\end{aligned}
$$

3. FLIPOdD1s $(L):=\{$ flipOdd1s $(w) \mid w \in L\}$, where the function flipOdd1 is defined as in the previous problem.

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct a new NFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts FlipOdd1s (L) as follows.

Intuitively, M^{\prime} receives some string flipOdd1s(w) as input, guesses which 0 bits to restore to 1 s , and simulates M on the restored string w. No string in FlipOdd1s (L) has two 1 s in a row, so if M^{\prime} ever sees 11 , it rejects.

Each state (q, f flip) of M^{\prime} indicates that M is in state q, and we need to flip a 0 bit before the next 1 if flip = True.

$$
\begin{aligned}
Q^{\prime} & =Q \times\{\text { TRUE, FALSE }\} \\
s^{\prime} & =(s, \text { TRUE }) \\
A^{\prime} & = \\
\delta^{\prime}((q, f l i p), a) & =
\end{aligned}
$$

4. $\operatorname{FARO}(L):=\{\operatorname{faro}(w, x) \mid w, x \in L$ and $|w|=|x|\}$, where the function faro is defined recursively as follows:

$$
\text { faro }(w, x):= \begin{cases}x & \text { if } w=\varepsilon \\ a \cdot f a r o(x, y) & \text { if } w=a y \text { for some } a \in \Sigma \text { and some } y \in \Sigma^{*}\end{cases}
$$

For example, faro(0001101, 1111001) $=01010111100011$. (A "faro shuffle" splits a deck of cards into two equal piles and then perfectly interleaves them.)

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct a DFA $M^{\prime}=$ $\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts $\operatorname{FARO}(L)$ as follows.

Intuitively, M^{\prime} reads the string faro (w, x) as input, splits the string into the subsequences w and x, and passes each of those strings to an independent copy of M.

Each state $\left(q_{1}, q_{2}\right.$, next) indicates that the copy of M that gets w is in state q_{1}, the copy of M that gets x is in state q_{2}, and next indicates which copy gets the next input bit.

$$
\begin{aligned}
Q^{\prime} & =Q \times Q \times\{1,2\} \\
s^{\prime} & =(s, s, 1) \\
A^{\prime} & = \\
\delta^{\prime}\left(\left(q_{1}, q_{2}, \text { next }\right), a\right) & =
\end{aligned}
$$

