
CS/ECE 374 A Lab 5 Solutions Fall 2019

Let L be an arbitrary regular language over the alphabet Σ = {0,1}. Prove that the following
languages are also regular. (You probably won’t get to all of these.)

1. FlipOdds(L) := {flipOdds(w) | w ∈ L}, where the function flipOdds inverts every odd-
indexed bit in w. For example:

flipOdds(0000111101010101) = 1010010111111111

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct a new DFA
M ′ = (Q′, s′, A′,δ′) that accepts FlipOdds(L) as follows.

Intuitively, M ′ receives some string flipOdds(w) as input, restores every other bit
to obtain w, and simulates M on the restored string w.

Each state (q,flip) of M ′ indicates that M is in state q, and we need to flip the
next input bit if flip= True

Q′ =Q× {True,False}
s′ = (s,True)
A′ = A× {True,False}

δ′((q,flip), a) =
�

δ(q, a⊕ flip), ¬flip
�

Here I am treating 1 and 0 as synonyms for True and False, respectively. �

2. UnflipOdd1s(L) := {w ∈ Σ∗ | flipOdd1s(w) ∈ L}, where the function flipOdd1 inverts
every other 1 bit of its input string, starting with the first 1. For example:

flipOdd1s(0000111101010101) = 0000010100010001

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct a new DFA
M ′ = (Q′, s′, A′,δ′) that accepts UnflipOdd1s(L) as follows.

Intuitively, M ′ receives some string w as input, flips every other 1 bit, and simulates
M on the transformed string.

Each state (q,flip) of M ′ indicates that M is in state q, and we need to flip the
next 1 bit of and only if flip= True.

Q′ =Q× {True,False}
s′ = (s,True)
A′ = A× {True,False}

δ′((q,flip), a) =
�

δ(q,flip⊕ a), flip⊕ a
�

Again, I am treating 1 and 0 as synonyms for True and False, respectively. �

1

CS/ECE 374 A Lab 5 Solutions Fall 2019

3. FlipOdd1s(L) := {flipOdd1s(w) | w ∈ L}, where the function flipOdd1 is defined as in the
previous problem.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct a new NFA
M ′ = (Q′, s′, A′,δ′) that accepts FlipOdd1s(L) as follows.

Intuitively, M ′ receives some string flipOdd1s(w) as input, guesses which 0 bits to
restore to 1s, and simulates M on the restored string w. No string in FlipOdd1s(L)
has two 1s in a row, so if M ′ ever sees 11, it rejects.

Each state (q,flip) of M ′ indicates that M is in state q, and we need to flip a 0 bit
before the next 1 bit if and only if flip= True.

Q′ =Q× {True,False}
s′ = (s,True)
A′ = A× {True,False}

δ′((q,False),0) =
��

δ(q,0), False
�	

δ′((q,True),0) =
��

δ(q,0), True
�

,
�

δ(q,1), False
�	

δ′((q,False),1) =
��

δ(q,1), True
�	

δ′((q,True),1) =∅

The last transition indicates that we waited too long to flip a 0 to a 1, so we should
kill the current execution thread. �

4. Faro(L) :=
�

faro(w, x)
�

� w, x ∈ L and |w|= |x |
	

, where the function faro is defined recur-
sively as follows:

faro(w, x) :=

¨

x if w= ε
a · faro(x , y) if w= a y for some a ∈ Σ and some y ∈ Σ∗

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct a DFA M ′ =
(Q′, s′, A′,δ′) that accepts Faro(L) as follows.

Intuitively, M ′ reads the string faro(w, x) as input, splits the string into the
subsequences w and x , and passes each of those strings to an independent copy of M .

Each state (q1, q2,next) indicates that the copy of M that gets w is in state q1, the
copy of M that gets x is in state q2, and next indicates which copy gets the next input
bit. Because of the constraint |w|= |x |, machine M ′ can accept only if next= 1.

Q′ =Q×Q× {1, 2}
s′ = (s, s, 1)

A′ =
�

(q1, q2, 1)
�

� q1, q2 ∈ A
	

δ′((q1, q2,next), a) =

¨

(δ(q1, a), q2, 2) if next= 1

(q1,δ(q2, a), 1) if next= 2

�

2

