CS/ECE 374 A Lab 5 Solutions Fall 2019

Let L be an arbitrary regular language over the alphabet ¥ = {0, 1}. Prove that the following
languages are also regular. (You probably won't get to all of these.)

1. FLipOpDps(L) := {flipOdds(w) | w € L}, where the function flipOdds inverts every odd-
indexed bit in w. For example:

flipOdds(0000111101010101) = 1010010111111111

Solution: Let M = (Q,s,A,5) be a DFA that accepts L. We construct a new DFA
M’ =(Q/,s’,A’, ") that accepts FLipODDS(L) as follows.

Intuitively, M’ receives some string flipOdds(w) as input, restores every other bit
to obtain w, and simulates M on the restored string w.

Each state (q,flip) of M’ indicates that M is in state g, and we need to flip the
next input bit if flip = TRUE
Q' = Q x {TRUE, FALSE}
s’ = (s, TRUE)
A’ = A x {TRUE, FALSE}
&'((q.flip), a) = (6(g, a ® flip), ~flip)

Here I am treating 1 and @ as synonyms for TRUE and FALSE, respectively. |

2. UNFLIPODD1s(L) := {w € ¥* | flipOdd1s(w) € L}, where the function flipOdd1 inverts
every other 1 bit of its input string, starting with the first 1. For example:

flipOdd15(0000111101010101) = 0000010100010001

Solution: Let M = (Q,s,A,5) be a DFA that accepts L. We construct a new DFA
M’ =(Q’,s’,A’,5) that accepts UNFLIPODD1s(L) as follows.

Intuitively, M’ receives some string w as input, flips every other 1 bit, and simulates
M on the transformed string.

Each state (q,flip) of M’ indicates that M is in state g, and we need to flip the
next 1 bit of and only if flip = TRUE.

Q' = Q x {TRUE, FALSE}

s’ = (s, TRUE)

A’ = A x {TRUE, FALSE}

&'((q.flip),a) = (5(q.flip® a), flip® a)

Again, I am treating 1 and @ as synonyms for TRUE and FALSE, respectively. |

CS/ECE 374 A Lab 5 Solutions Fall 2019

3. FLIPODD1s(L) := {flipOdd1s(w) | w € L}, where the function flipOdd1 is defined as in the
previous problem.

Solution: Let M = (Q,s,A,d) be a DFA that accepts L. We construct a new NFA
M’ =(Q,s’,A’,8) that accepts FLipOpD1s(L) as follows.

Intuitively, M’ receives some string flipOdd1s(w) as input, guesses which 0 bits to
restore to 1s, and simulates M on the restored string w. No string in FLIPODD1s(L)
has two 1s in a row, so if M’ ever sees 11, it rejects.

Each state (q,flip) of M’ indicates that M is in state q, and we need to flip a @ bit
before the next 1 bit if and only if flip = TRUE.

Q' = Q x {TRUE, FALSE}
s’ = (s, TRUE)
A = A x {TRUE, FALSE}
&'((q, Fase), @) = {(5(q, 0), FaLsE)}
5'((g, Trug),0) = {(56(q, @), TrUE), (5(g,1), FaLsSE)}
&'((q,FaLse), 1) = {(8(q, 1), TruE)}
5'((q, TRUE), 1) =&

The last transition indicates that we waited too long to flip a @ to a 1, so we should
kill the current execution thread. [|

4. Faro(L) := {faro(w,x) \ w,x € L and |w| = |x|}, where the function faro is defined recur-
sively as follows:

fw=¢

a-faro(x,y) if w=ay for some a € ¥ and some y € ©*

faro(w, x) := {x

Solution: Let M = (Q,s,A,5) be a DFA that accepts L. We construct a DFA M’ =
(Q,s’,A’,8") that accepts Faro(L) as follows.

Intuitively, M’ reads the string faro(w, x) as input, splits the string into the
subsequences w and x, and passes each of those strings to an independent copy of M.

Each state (q;, g9, next) indicates that the copy of M that gets w is in state q;, the
copy of M that gets x is in state q,, and next indicates which copy gets the next input
bit. Because of the constraint |w| = |x|, machine M’ can accept only if next = 1.

Q' =QxQx{1,2}

s’ =(s,s,1)

A ={(q1,92,1) | q1,92 €A}
(5((]1,61), q232) if next =1

5/ b b t’ =
(@2, 4z, next),) {(ql,a(qz,a),l) if next = 2

