Give context-free grammars for each of the following languages.

1. $\{\mathbf{0}^{2n}\mathbf{1}^n \mid n \geq 0\}$

Solution: $S \rightarrow \varepsilon \mid 00S1$

2. $\{\mathbf{0}^m \mathbf{1}^n \mid m \neq 2n\}$

[Hint: If $m \neq 2n$, then either m < 2n or m > 2n.]

Solution: To simplify notation, let $\Delta(w) = \#(\mathbf{0}, w) - 2\#(\mathbf{1}, w)$. Our solution follows the following logic. Let w be an arbitrary string in this language.

- Because $\Delta(w) \neq 0$, then either $\Delta(w) > 0$ or $\Delta(w) < 0$.
- If $\Delta(w) > 0$, then $w = 0^i z$ for some integer i > 0 and some suffix z with $\Delta(z) = 0$.
- If $\Delta(w) < 0$, then $w = x \mathbf{1}^j$ for some integer j > 0 and some prefix x with either $\Delta(x) = 0$ or $\Delta(x) = 1$.
- Substrings with $\Delta = 0$ is generated by the previous grammar; we need only a small tweak to generate substrings with $\Delta = 1$.

Here is one way to encode this case analysis as a CFG. The nonterminals M and L generate all strings where the number of 0s is M ore or L ess than twice the number of 1s, respectively. The last nonterminal generates strings with $\Delta = 0$ or $\Delta = 1$.

$$S \to M \mid L$$
 $\{0^{m} \mathbf{1}^{n} \mid m \neq 2n\}$
 $M \to 0M \mid 0E$ $\{0^{m} \mathbf{1}^{n} \mid m > 2n\}$
 $L \to L \mathbf{1} \mid E \mathbf{1}$ $\{0^{m} \mathbf{1}^{n} \mid m < 2n\}$
 $E \to \varepsilon \mid 0 \mid 00E \mathbf{1}$ $\{0^{m} \mathbf{1}^{n} \mid m = 2n \text{ or } 2n + 1\}$

Here is a different correct solution using the same logic. We either identify a non-empty prefix of 0s or a non-empty prefix of 1s, so that the rest of the string as "balanced" as possible. We also generate strings with $\Delta = 1$ using a separate non-terminal.

$$S \rightarrow AE \mid EB \mid FB$$

$$A \rightarrow 0 \mid 0A$$

$$B \rightarrow 1 \mid 1B$$

$$E \rightarrow \varepsilon \mid 00E1$$

$$F \rightarrow 0E$$

$$\{0^{m} \mathbf{1}^{n} \mid m \neq 2n\}$$

$$\mathbf{1}^{+} = \{0^{i} \mid i \geq 1\}$$

$$\{0^{m} \mathbf{1}^{n} \mid m = 2n\}$$

$$\{0^{m} \mathbf{1}^{n} \mid m = 2n + 1\}$$

Alternatively, we can separately generate all strings of the form $0^{\text{odd}} 1^*$, so that we don't have to worry about the case $\Delta = 1$ separately.

$$S \to D \mid M \mid L$$
 $\{0^{m} \mathbf{1}^{n} \mid m \neq 2n\}$
 $D \to 0 \mid 00D \mid D\mathbf{1}$ $\{0^{m} \mathbf{1}^{n} \mid m \text{ is odd}\}$
 $M \to 0M \mid 0E$ $\{0^{m} \mathbf{1}^{n} \mid m > 2n\}$
 $L \to L\mathbf{1} \mid E\mathbf{1}$ $\{0^{m} \mathbf{1}^{n} \mid m < 2n \text{ and } m \text{ is even}\}$
 $E \to \varepsilon \mid 00E\mathbf{1}$ $\{0^{m} \mathbf{1}^{n} \mid m = 2n\}$

1

Solution: Intuitively, we can parse any string $w \in L$ as follows. First, remove the first 2k 0s and the last k 1s, for the largest possible value of k. The remaining string cannot be empty, and it must consist entirely of 0s, entirely of 1s, or a single 0 followed by 1s.

$S \rightarrow 00S1 \mid A \mid B \mid C$	$\{0^m 1^n \mid m \neq 2n\}$
$A \rightarrow 0 \mid 0A$	0 ⁺
$B \rightarrow 1 \mid 1B$	1+
$C \rightarrow 0 \mid 0B$	01*

3. $\{0,1\}^* \setminus \{0^{2n}1^n \mid n \ge 0\}$

Solution: This language is the union of the previous language and the complement of 0^*1^* , which is $(0+1)^*10(0+1)^*$.

$$S \to T \mid X$$
 {0,1}*\\\ $\{0^{2n}1^n \mid n \ge 0\}$
 $T \to 00T1 \mid A \mid B \mid C$ {0^m1ⁿ \| $m \ne 2n$ }
 $A \to 0 \mid 0A$ 0⁺
 $B \to 1 \mid 1B$ 1⁺
 $C \to 0 \mid 0B$ 01*
 $X \to Z10Z$ (0+1)*10(0+1)*
 $Z \to \varepsilon \mid 0Z \mid 1Z$ (0+1)*

Work on these later:

4. $\{w \in \{0, 1\}^* \mid \#(0, w) = 2 \cdot \#(1, w)\}$ — Binary strings where the number of 0s is exactly twice the number of 1s.

Solution: $S \rightarrow \varepsilon \mid SS \mid 00S1 \mid 0S1S0 \mid 1S00$.

Here is a sketch of a correctness proof; a more detailed proof appears in the homework.

For any string w, let $\Delta(w) = \#(0, w) - 2 \cdot \#(1, w)$. Suppose w is a binary string such that $\Delta(w) = 0$. Suppose w is nonempty and has no non-empty proper prefix x such that $\Delta(x) = 0$. There are three possibilities to consider:

- Suppose $\Delta(x) > 0$ for every proper prefix x of w. In this case, w must start with 00 and end with 1. Thus, w = 00x1 for some string $x \in L$.
- Suppose Δ(x) < 0 for every proper prefix x of w. In this case, w must start with 1 and end with 00. Let x be the shortest non-empty prefix with Δ(x) = 1. Thus, w = 1X00 for some string x ∈ L.
- Finally, suppose $\Delta(x) > 0$ for some prefix x and $\Delta(x') < 0$ for some longer proper prefix x'. Let x' be the shortest non-empty proper prefix of w with $\Delta < 0$. Then $x' = \mathbf{0}y \mathbf{1}$ for some substring y with $\Delta(y) = 0$, and thus $w = \mathbf{0}y \mathbf{1}z \mathbf{0}$ for some strings $y, z \in L$.

5. $\{\mathbf{0}, \mathbf{1}\}^* \setminus \{ww \mid w \in \{\mathbf{0}, \mathbf{1}\}^*\}.$

Solution: All strings of odd length are in *L*.

Let w be any even-length string in L, and let m = |w|/2. For some index $i \le m$, we have $w_i \ne w_{m+i}$. Thus, w can be written as either $x \mathbf{1} y \mathbf{0} z$ or $x \mathbf{0} y \mathbf{1} z$ for some substrings x, y, z such that |x| = i - 1, |y| = m - 1, and |z| = m - i. We can further decompose y into a prefix of length i - 1 and a suffix of length m - i. So we can write any even-length string $w \in L$ as either $x \mathbf{1} x' z' \mathbf{0} z$ or $x \mathbf{0} x' z' \mathbf{1} z$, for some strings x, x', z, z' with |x| = |x'| = i - 1 and |z| = |z'| = m - i. Said more simply, we can divide w into two odd-length strings, one with a $\mathbf{0}$ at its center, and the other with a $\mathbf{1}$ at its center.

 $S \rightarrow AB \mid BA \mid A \mid B$ strings not of the form ww $A \rightarrow 0 \mid \Sigma A\Sigma$ odd-length strings with 0 at center $B \rightarrow 1 \mid \Sigma B\Sigma$ odd-length strings with 1 at center $\Sigma \rightarrow 0 \mid 1$ single character

6. Prove that every regular language is context free.

Solution: It is in the notes.