Prove that each of the following languages is not regular.

1. $\{\mathbf{0}^{2^n} \mid n \ge 0\}$

Solution (verbose): Let $F = L = \{0^{2^n} \mid n \ge 0\}$. Let x and y be arbitrary elements of F. Then $x = 0^{2^i}$ and $y = 0^{2^j}$ for some non-negative integers x and y. Let $z = 0^{2^i}$. Then $xz = 0^{2^i}0^{2^i} = 0^{2^{i+1}} \in L$. And $yz = 0^{2^j}0^{2^i} = 0^{2^{i+2^j}} \notin L$, because $i \neq j$ Thus, F is a fooling set for L. Because F is infinite, L cannot be regular.

Solution (concise): For any non-negative integers $i \neq j$, the strings 0^{2^i} and 0^{2^j} are distinguished by the suffix 0^{2^i} , because $0^{2^i}0^{2^i} = 0^{2^{i+1}} \in L$ but $0^{2^j}0^{2^i} = 0^{2^{i+j}} \notin L$. Thus *L* itself is an infinite fooling set for *L*.

2. $\{\mathbf{0}^{2n}\mathbf{1}^n \mid n \ge 0\}$

Solution (verbose): Let *F* be the language 0^* .

Let x and y be arbitrary strings in F. Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$. Let $z = 0^i \mathbf{1}^i$. Then $xz = 0^{2i} \mathbf{1}^i \in L$. And $yz = 0^{i+j} \mathbf{1}^i \notin L$, because $i + j \neq 2i$. Thus, F is a fooling set for L. Because F is infinite, L cannot be regular.

Solution (concise): For all non-negative integers $i \neq j$, the strings $\mathbf{0}^i$ and $\mathbf{0}^j$ are distinguished by the suffix $\mathbf{0}^i \mathbf{1}^i$, because $\mathbf{0}^{2i} \mathbf{1}^i \in L$ but $\mathbf{0}^{i+j} \mathbf{1}^i \notin L$. Thus, the language $\mathbf{0}^*$ is an infinite fooling set for L.

Solution (concise, different fooling set): For all non-negative integers $i \neq j$, the strings 0^{2i} and 0^{2j} are distinguished by the suffix $\mathbf{1}^i$, because $0^{2i}\mathbf{1}^i \in L$ but $0^{2j}\mathbf{1}^i \notin L$. Thus, the language $(00)^*$ is an infinite fooling set for *L*.

3. $\{\mathbf{0}^m \mathbf{1}^n \mid m \neq 2n\}$

Solution (verbose): Let *F* be the language 0^* .

Let x and y be arbitrary strings in F. Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$. Let $z = 0^i \mathbf{1}^i$. Then $xz = 0^{2i} \mathbf{1}^i \notin L$. And $yz = 0^{i+j} \mathbf{1}^i \in L$, because $i + j \neq 2i$. Thus, F is a fooling set for L. Because F is infinite, L cannot be regular.

Solution (concise, different fooling set): For all non-negative integers $i \neq j$, the strings 0^{2i} and 0^{2j} are distinguished by the suffix $\mathbf{1}^i$, because $0^{2i}\mathbf{1}^i \notin L$ but $0^{2j}\mathbf{1}^i \in L$. Thus, the language $(00)^*$ is an infinite fooling set for *L*.

4. Strings over $\{0, 1\}$ where the number of 0s is exactly twice the number of 1s.

Solution (verbose): Let *F* be the language 0^* .

Let x and y be arbitrary strings in F. Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$. Let $z = 0^i \mathbf{1}^i$. Then $xz = 0^{2i} \mathbf{1}^i \in L$. And $yz = 0^{i+j} \mathbf{1}^i \notin L$, because $i + j \neq 2i$. Thus, F is a fooling set for L. Because F is infinite, L cannot be regular.

Solution (concise, different fooling set): For all non-negative integers $i \neq j$, the strings $\mathbf{0}^{2i}$ and $\mathbf{0}^{2j}$ are distinguished by the suffix $\mathbf{1}^i$, because $\mathbf{0}^{2i}\mathbf{1}^i \in L$ but $\mathbf{0}^{2j}\mathbf{1}^i \notin L$. Thus, the language $(\mathbf{00})^*$ is an infinite fooling set for *L*.

Solution (closure properties): If *L* were regular, then the language

$$\left((\mathbf{0} + \mathbf{1})^* \setminus L \right) \cap \mathbf{0}^* \mathbf{1}^* = \{ \mathbf{0}^m \mathbf{1}^n \mid m \neq 2n \}$$

would also be regular, because regular languages are closed under complement and intersection. But we just proved that $\{0^m 1^n \mid m \neq 2n\}$ is not regular in problem 3. [Yes, this proof would be worth full credit, either in homework or on an exam.]

5. Strings of properly nested parentheses (), brackets [], and braces {}. For example, the string ([]) {} is in this language, but the string ([)] is not, because the left and right delimiters don't match.

Solution (verbose): Let *F* be the language (*.

Let x and y be arbitrary strings in F. Then $x = ({}^{i}$ and $y = ({}^{j}$ for some non-negative integers $i \neq j$. Let $z =)^{i}$. Then $xz = ({}^{i})^{i} \in L$. And $yz = ({}^{j})^{i} \notin L$, because $i \neq j$. Thus, F is a fooling set for L. Because F is infinite, L cannot be regular.

Solution (concise): For any non-negative integers $i \neq j$, the strings $({}^i$ and $({}^j$ are distinguished by the suffix $)^i$, because $({}^i)^i \in L$ but $({}^i)^j \notin L$. Thus, the language $({}^*$ is an infinite fooling set.

6. Strings of the form $w_1 # w_2 # \cdots # w_n$ for some $n \ge 2$, where each substring w_i is a string in $\{0, 1\}^*$, and some pair of substrings w_i and w_j are equal.

Solution (verbose): Let *F* be the language 0^* .

Let x and y be arbitrary strings in F. Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$. Let $z = \#0^i$. Then $xz = 0^i \#0^i \in L$. And $yz = 0^j \#0^i \notin L$, because $i \neq j$. Thus, F is a fooling set for L. Because F is infinite, L cannot be regular.

Solution (concise): For any non-negative integers $i \neq j$, the strings $\mathbf{0}^i$ and $\mathbf{0}^j$ are distinguished by the suffix $\mathbf{#0}^i$, because $\mathbf{0}^i \mathbf{#0}^i \in L$ but $\mathbf{0}^j \mathbf{#0}^i \notin L$. Thus, the language $\mathbf{0}^*$ is an infinite fooling set.

Work on these later:

7. $\{\mathbf{0}^{n^2} \mid n \ge 0\}$

Solution: Let *x* and *y* be distinct arbitrary strings in *L*.

Without loss of generality, $x = 0^{i^2}$ and $y = 0^{j^2}$ for some $i > j \ge 0$. Let $z = 0^{2i+1}$. Then $xz = 0^{i^2+2i+1} = 0^{(i+1)^2} \in L$

On the other hand, $yz = 0^{i^2+2j+1} \notin L$, because $i^2 < i^2 + 2j + 1 < (i+1)^2$.

Thus, z distinguishes x and y.

We conclude that L is an infinite fooling set for L, so L cannot be regular.

Solution: Let *x* and *y* be distinct arbitrary strings in 0^* .

Without loss of generality, $x = 0^i$ and $y = 0^j$ for some $i > j \ge 0$. Let $z = 0^{i^2+i+1}$. Then $xz = 0^{i^2+2i+1} = 0^{(i+1)^2} \in L$. On the other hand, $yz = 0^{i^2+i+j+1} \notin L$, because $i^2 < i^2 + i + j + 1 < (i+1)^2$. Thus, z distinguishes x and y. We conclude that 0^* is an infinite fooling set for L, so L cannot be regular.

Solution: Let *x* and *y* be distinct arbitrary strings in 0000^* .

Without loss of generality, $x = 0^i$ and $y = 0^j$ for some $i > j \ge 3$. Let $z = 0^{i^2 - i}$. Then $xz = 0^{i^2} \in L$. On the other hand, $yz = 0^{i^2 - i + j} \notin L$, because

$$(i-1)^2 = i^2 - 2i + 1 < i^2 - i < i^2 - i + j < i^2$$

(The first inequalities requires $i \ge 2$, and the second $j \ge 1$.)

Thus, z distinguishes x and y.

We conclude that 0000^* is an infinite fooling set for *L*, so *L* cannot be regular.

8. { $w \in (0 + 1)^*$ | w is the binary representation of a perfect square}

Solution: We design our fooling set around numbers of the form $(2^{k}+1)^{2} = 2^{2k}+2^{k+1}+1 = 10^{k-2}10^{k}1 \in L$, for any integer $k \ge 2$. The argument is somewhat simpler if we further restrict k to be even.

Let $F = \mathbf{1}(\mathbf{00})^* \mathbf{1}$, and let x and y be arbitrary strings in F.

Then $x = \mathbf{10}^{2i-2}\mathbf{1}$ and $y = \mathbf{10}^{2j-2}\mathbf{1}$, for some positive integers $i \neq j$.

Without loss of generality, assume i < j. (Otherwise, swap *x* and *y*.)

Let $z = 0^{2i} \mathbf{1}$.

Then $xz = 10^{2i-2}10^{2i}1$ is the binary representation of $2^{4i} + 2^{2i+1} + 1 = (2^{2i} + 1)^2$, and therefore $xz \in L$.

On the other hand, $yz = 10^{2j-2}10^{2i}1$ is the binary representation of $2^{2i+2j} + 2^{2i+1} + 1$. Simple algebra gives us the inequalities

$$(2^{i+j})^2 = 2^{2i+2j}$$

< $2^{2i+2j} + 2^{2i+1} + 1$
< $2^{2(i+j)} + 2^{i+j+1} + 1$
= $(2^{i+j} + 1)^2$.

So $2^{2i+2j} + 2^{2i+1} + 1$ lies between two consecutive perfect squares, and thus is not a perfect square, which implies that $yz \notin L$.

We conclude that *F* is a fooling set for *L*. Because *F* is infinite, *L* cannot be regular.